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1. Introduction 
Certain image properties, such as parallelisms, symmetries, and 

repeated patterns, provide cues for perceiving the 3-D shape from 
a 2-D picture. This paper demonstrates how we can map those 
image properties into 3-D shape constraints by associating 
appropriate assumptions with them and by using appropriate 
computational and representational tools. 

We begin with the exploration of how one specific image 
property, “skewed symmetry”, can be defined and formulated to 
serve as a cue to the determination of surface orientations. Then 
we will discuss the issue from two new, broader viewpoints. One 
is the class of Affine-transformable patterns. It has various 
interesting properties, and includes skewed symmetry as a special 
case. The other is the computational paradigm of 
shape-from-texture. Skewed symmetry is derived in a second, 
independent way, as an instance of the application of the 
paradigm. 

This paper further claims that the ideas and techniques 
presented here are applicable to many other properties, under the 
general framework of the shape-from-texture paradigm, with the 
underlying meta-heuristic of non-accidental image properties. 

2. Skewed Symmetry 
In this section we assume the standard orthographic 

projections from scene to image, and a knowledge of the gradient 
space (see [4]). 

Symmetry in a 2-D picture has an axis for which the opposite 
sides are reflective; in other words, the symmetrical properties are 
found along the transverse lines perpendicular to the symmetry 
axis. The concept skewed symmefry is introduced by Kanade [l] 
by relaxing this condition a little. It means a class of 2-D shapes in 
which the symmetry is found along lines not necessarily 
perpendicular to the axis, but at a fixed angle to it. Formally, such 
shapes can be defined as 2-D Affine transforms of real 
symmetries. Figures 2-1 (a)(b) show a few key examples. 

Stevens [5] presents a good body of psychological experiments 
which suggests that human observers can perceive surface 
orientations from figures with this property. This is probably 
because such qualitative symmetry in the image is often due to 

Figure 2-1: Skewed symmetry 

(b) 

real symmetry in the scene. Thus let us associate the following 
assumption with this image property: 

“A skewed symmetry depicts a real symmetry viewed 
from some unknown view angle.” 

Note that the converse of this assumption is always true under 
orthographic projection. 

We can transform this assumption into constraints in the 
gradient space. As shown in Figure 2-1, a skewed symmetry 
defines two directions: let us call them the skewed-symmetry axis 
and the skewed-transverse axis, and denote their directional 
angles in the picture by (r and /?, respectively (Figure 2-l(c)). Let 
G = (p,q) be the gradient of the plane which includes the skewed 
symmetry. We will show that 

p’*cos*(~) - q’*sin*(y) = -cos(a-/?) (1) 

where p’ = pcosX + qsinX 
q’ = -psinX + qcosX 
h = (a + /3)/2. 

Thus, the (p,q)‘s are on a hyperbola. That is, the skewed 
symmetry defined by (Y and fl in the picture can be a projection of 
a real symmetry if and only if the gradient is on this hyperbola. The 
skewed symmetry thus imposes a one-dimensional family of 
constraints on the underlying surface orientation (p,q). 

3. Affine-Transformable Patterns 
In texture analysis we often consider small patterns 

(texel= texture element) whose repetition constitutes “texture”. 
Suppose we have a pair of texel patterns in which one is a 2-D 
Affine transform of the other; we call them a pair of 
Affine-transformable patterns. Let us assume that 

“A pair of Affine-transformable patterns in the 
picture are projection of similar patterns in the 3-D 
space (i.e., they can be overlapped by scale change, 
rotation, and translation)“. 

Note that, as in the case of skewed symmetry, the coiiverse of this 
assumption is always true under orthographic projections. The 
above assumption can be schematized by Figure 3-l. 

Consider two texel patterns P, and P, in the picture, and place the 
origins of the x-y coordinates at their centers, respectively. The 
transform from P2 to P, can be expressed by a regular 2x2 matrix 
A = (aij). PI and P2 are projections of patterns P’, and P’, which 
are drawn on the 3-D surfaces. We assume that P’, and P’, are 
small enough SO that we can regard them as being drawn on small 
planes. Let us denote the gradients of those small planes by 
G, = (~1 ,ql) and G2 = (p2,q2), respectively; i.e., P’, is drawn on a 
plane-z=p,x+q,yandP’20n-z=p2x+q12y. 
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Now, our assumption amounts to saying that P’, is 
transformable from .P’, by a scalar scale factor u and a rotation 
matrix R = (zynsz iz,“d,“,*). (W e can omit the translation from our 
consideration, since for each pattern the origin of the coordinates 
is placed at its gravity center, which is invariant under the 
Affine-transform). Thinking about a pattern drawn on a small 
plane, -z= px + qy, is equivalent to viewing the pattern from 
directly overhead; that is, rotating the x-y-z coordinates so that the 
normal vector of the plane is along the new z-axis (line of sight). 
For this purpose we rotate the coordinates first bv cp around the 
y-axis and then by 8 around the x-axis. We have the following 
relations among v, 8, p, and q: 

sincp = p/m cosql = 1 /J&i (2) 
sine =9/&7&i c0se = J;;T;-i/ 

The plane which was represented as -z= px +qy in the old 
coordinates is, of course, now represented as -z’ =O in the new 
coordinates. 

Let us denote the angles of the coordinate rotations to obtain 
P’, and P’, in Figure 3-l by (cp, ,8,) and (‘p2,e2), individually. The 
2-D mapping from P’i (xl-y’ plane) to Pi (x-y plane) can be 
conveniently represented by the following 2x2 matrix Tt which is 
actually a submatrix of the usual 3-D rotation matrix. 

Ti =( cyo -Si~W~“) 

Now, in order for the schematic diagram of Figure 3-1 to hold, 
what relationships have to be satisfied among the matrix A = (at)), 
the gradients Gi = (pilqi) for i = 1,2, the angles (pi, ei) for i = 1,2, the 
scale factor u, and the matrix R ? We equate the two transforms 
that start from P’, to reach at P,: one following the diagram 
counter-clockwise P’,->P*->P, , the other clockwise P’,->P’,->P,. 
We obtain 

AT2 = T, aR. 

By eliminating u and a, and substituting for sines and cosines 
of pi and Bi by (2), we have two (fairly complex) equations in terms 
of pi, qi, and the elements of A. We therefore find that the 
assumption of Affine-transformable patterns yields a constraint 
determined solely by the matrix A. The matrix is determined by the 
relation between P, and P, observable in the picture: without 

CT/?= CT ( 
coti -5ind 
Sind ~0x4 > 

Figure 3-1: A schematic diagram showing the assumptions 
on Affine transformable patterns. 

knowing either the original patterns 
relationships (a and R) in the 3-D space. 

(P’, and P’*) or their 

The Affine transform from P, to P, is more intuitively 
understood by how a pair of perpendicular unit-length vectors 
(typically along the x and y coordinate axes) are mapped into their 
transformed vectors. Two angles (a and /I) and two lengths (T and 
p) can characterize the transform. Components of the 
transformation matrix A = (aij) are represented by: 

a,, =7cosa a12=Pcos/? (3) 
a21 = Tsina a2* = psi@ 

Let us consider the case that a and p are known, but T and p 
are not. Using (3), eliminate T and p. Then, we obtain 

(Pl cosa + q 1 sinaNp, cosp + q, sir@) + cos(a-P) = 0 

which is exactly the same as the hyperbola (1). 

. The Shape-from-Texture Paradigm 
This section derives the same skewed-symmetry constraints 

from a second theory, different from the Affine-transformable 
patterns. The shape-from-texture paradigm is briefly presented 
here; a futler discussion can be found in [3]. 

The paradigm has two major portions. In the first, a given 
image textural property is “normalized” to give a general class of 
surface orientation constraints. In the second, the normalized 
values are used in conjunction with assumed scene relations to 
refine the constraints. Only two texels are required, and only one 
assumption (equality of scenic texture objects, or some other 
simple relation) to generate a well-behaved one-dimensional 
family of possible surface orientations. 

The first step in the paradigm is the normalization of a given 
texel property. The goal is to create a normalized texture property 
map (NTPM), which is a representational and computational tool 
relating image properties to scene properties. The NTPM 
summarizes the many different conditions that may have occurred 
in the scene leading to the formation of the given texel. In general, 
the NTPM of a certain property is-a scalar-valued function of two 
variables. The two input variables describe the postulated surface 
orientation in the scene (top-bottom and left-right slants: (p,q) 
when we use the gradient space). The NTPM returns the value of 
the property that the textural object would have had in the scene, 
in order for the image to have the observed textural property. As 
an example, the NTPM for a horizontal unit line length in the image 
summarizes the lengths of lines that would have been necessary in 
3-D space under various orientations: at surface orientation (p,q), 
it would have to be m. 

More specifically, the NTPM is formed by selecting a texel and a 
texel property, back-projecting the texel through the known 
imaging geometry onto all conceivable surface orientations, and 
measuring the texel property there. 

In the second phase of the paradigm, the NTPM is refined in the 
following way. Texels usually have various orientations in the 
image, and there are many different texel types. Each texel 
generates its own image-scene relationships, summarized in its 
NTPM. If, however, assumptions can be made to relate one texel 
to another, then their NTPMs can also be related; in most cases 
only a few scenic surface orientations can satisfy both texels’ 
requirements. Some examples of the assumptions that relate 
texels are: both lie in the same plane, both are equal in textural 
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measure (length, area, etc.), one is k times the other in measure, 
etc. Relating texels in this manner forces more stringent demands 
on the scene. If enough relations are invoked, the orientation of 
the local surface supporting two or nrore related texels can be very 
precisely determined. 

What we now show is that the skewed symmetry method is a 
special case of the shape-from-texture paradigm; it can be derived 
from considerations of texel slope. 

To normalize the slope of a texel, it is back-projected onto a 
plane with the postulated orientation. The angle that the 
back-projected slope makes with respect to the gradient vector of 
the plane is one good choice (out of many) for the normalized 
slope measure. Under perspective, the normalized value depends 
on the image position and camera focal length; under orthography 
it is much simpler. 

Using the construction in Figure 4-1, together with several 
lemmas relating surfaces in perspective to their local vanishing 
lines, slope is normalized as follows. Assume a slope is parallel to 
the p axis; the image and gradient space can always be rotated 
into such a position. (If rotation is necessary, the resulting NTPM 
can be de-rotated into the original position using the standard 
two-by-two orthonormal matrix.) Also assume that the slope is 
somewhere along the line y = ys, where the unit of measurement 
in the image is equal to one focal length. Then, the normalized 
slope value--the normalized texture property map -- is given by 

Es - Ys(P2 + cl211 ~dtl + P2 + s*>1. 
This normalized value can be exploited in several ways. Most 
important is the result that is obtained when one has two slopes in 
the image that are assumed to arise from equal slopes in the 
scene. Under this assumptions, their normalized property maps 
can be equated. The resulting constraint, surprisingly, is a simple 
straight line in the gradient space. 

Under orthography, nearly everything simplifies. The 
normalized slope of a texel becomes 

q / [P/(1 f P2 + q*>1. (4) 
lt is independent of Y,; in effect, all slopes are at the focal point. 

Consider Figure 2-1 (a). Given the angle that the two texels form 
(/?-a), rotate the gradient space so that the positive p axis bisects 
the angle. Let each half-angle be 6, so 6 = (/I-a)/2. Calculating 
the normalized value of either slope is obtained directly from the 
standard normalized slope formula, corrected for the 
displacement of + S and -6 respectively. That is, for the slope at 
the positive 6 orientation, instead of formula (4), we use the 

Figure 4-1: Back-projecting an image slope onto a plane 
with gradient (p, q). 

formula under the substitution pcosS + qsin6 for p, 
for q. We do similarly for the slope at -8. 

-psin6 qcosd 

The fact that the normalized slopes are assumed to be 
perpendicular in the scene allows us to set one of the normalized 
values equal to the negative reciprocal of the other. The resultant 
equation becomes 

p2cos2&q2sin26 = sin*&cos*S = -cos26. 

This is exactly the hyperbola (1) with 26 =/l-a. 

5. Conclusion 
The assumptions we used for the skewed symmetry, the 

Affine-transformable patterns, and texture analysis can be 
generalized as 

“Properties observable in the picture are not by 
accident, but are projections of some preferred 
corresponding 3-D properties.” 

This provides a useful meta-heuristic for exploiting image 
properties: we can call it the meta-heuristic of non-accidental 
image properties. It can be regarded as a generalization of 
general view directions, often used in the blocks world, to exclude 
the cases of accidental line alignments. 

Instances that can fall within this meta-heuristic includes: 
parallel lines in the picture vs. parallel lines in the scene, texture 
gradients, and lines convergent to a vanishing point. 

One of the most essential points of our technique is that we 
related certain image properties to certain 3-D space properties, 
and that we map the relationships into convenient representations 
of shape constraints. We explicitly incorporate assumptions 
based either on the meta-heuristic or on apriori knowledge of the 
world. The shape-from-texture paradigm provides a 
computational framework for our technique. In most part of our 
discussion we assumed orthography. Similar--though more 
involved and less intuitive--results can be obtained under 
perspective projections. 

This work is further 
same title as this paper. 

.discussed in a technical report with 

PI 
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