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ABSTRACT 

We propose a computationai modei for 
interpreting iine drawings as three-dimensionai 
surfaces, based on constraints on iocai surface 
orientation aiong extremai and discontinuity 
boundaries. Specific techniques are described for 
two key processes: recovering the three- 
dimensionai conformation of a space curve (e.g., a 
surface boundary) from its two-dimensionai 
projection in an image, and interpoiating smooth 
surfaces from orientation constraints aiong 
extremai boundaries. 

INTRODUCTION 

Our objective is the deveiopment of a computer 
modei for interpreting two-dimensionai iine 
drawings, such as Figure 1, as three-dimensionai 
surfaces and surface boundaries. Line drawings 
depict intensity discontinuities at surface 
boundaries, which, in many cases, are the primary 
source of surface information avaiiabie in an 
image: i.e., in areas of shadow, compiex 
(secondary) iiiumination, or specuiar surfaces 
anaiytic photometry is inappropriate. 
Understanding how iine drawings convey three- 
dimensionaiity is thus of fundamentai importance. 

Given a perspectiveiy correct iine drawing 
depicting discontinuities of smooth surfaces, we 
desire as output arrays containing vaiues for 
orientation and reiative range at each point on the 
impiied surfaces. This objective is distinct from 
that of eariier work on interpretation in terms of 
object modeis (e.g. [I]) and more basic. No 
knowiedge of piants is required to understand the 
three-dimensionai structure of Figure 1, as can be 
demonstrated by viewing fragments out of context 
(through a mask, for exampie). 

Ambiguity and Constraints 

The centrai probiem in perceiving iine 
drawings is one of ambiguity: in theory, each two- 
dimensionai iine in the image couid correspond to a 
possibie projection of an infinitude of three- 
dimensionai space curves (see Figure 2). Yet 
peopie are not aware of this massive ambiguity. 
When asked to provide a three-dimensionai 
interpretation-of an eiiipse, the overwheiming 
response is a tiited circie, not some bizarrely 
twisting curve (or even a discontinuous one) that 
has the same image. What assumptions about the 
scene and the imaging process are invoked to 
constrain to this unique interpretation? 

* This research was supported by funds from DARPA, 
NASA, and NSF. 

We observe that aithough aii the iines in 
Figure 1 iook fundamentaiiy aiike, two distinct 
types of scene event are depicted: extremai 
boundaries (e.g., the sides of the vase), where a 
surface turns smoothiy away from the viewer, and 
discontinuity boundaries (e.g., the edges of the 
ieavss), where smooth surfaces terminate or 
interswt. Each type provides different 
constraints on three-dimensionai interpretation. 
At an extremai boundary, the surface orientation 
can be inferred exactiy; at every point aiong the 
boundary, orientation is normai to the iine of 
si ht and to the tangent to the curve in the image 
d. A discontinuity boundary, by contrast, does 
not dirsctiy constrain surface orientation. 
However, its iocai curvature in the image does 
provide a statisticai constraint on the three- 
dimension& tangent of the corresponding space 
curve. The iocai surface normai is constrained 
oniy to be orthogonai to this tangent, and is thus 
free to swing about it as shown in Figure 3. 

The abiiity to infer 3-D surface structure 
from extremai and discontinuity boundaries suggests 
a three-step modei for iine drawing interpretation, 
anaiogous to those invoived in our intrinsic image 
modei [2]: iine sorting, boundary interpretation, 
and surface interpoiation. Each iine is first 
ciassified according to the type of surface 
boundary it represents (i.e., extremai versus 
discontinuity). Surface contours are interpreted 
as three-dimensionai space curves, providing 
reiative 3-D distances aiong each curve; iocai 
surface normais are assigned aiong the extremai 
boundaries. Finaiiy, three-dimensionai surfaces 
consistent with these boundary conditions are 
constructed by interpoiation. (For an aiternative 
model, see Stevens [3].) This paper addresses some 
important aspects of three-dimensionai recovery and 
interpoiation (see [l] and [4] for approaches to 
iine ciassification). 

INTERPRETATION OF DISCONTINUITY BOUNDARIES 

To recover the three-dimensionai conformation 
of a surface discontinuity boundary from its image, 
we invoke two assumptions: surface smoothness and 
generai position. The smoothness assumption 
impiies that the space curve bounding a surface 
wiii aiso be smooth. The assumption that the scene 
is viewed from a generai position impiies that a 
smooth curve in the image resuits from a smooth 
curve in space, and not from an accident of 
viewpoint. In Figure 2, for exampie, the sharpiy 
receding curve projects into a smooth eiiipse from 
oniy one viewpoint. Thus, such a curve wouid be a 
highiy improbabie three-dimensionai interpretation 
of an eiiipse. 
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The problem now is to determine which smooth 
space curve is most iikeiy. For the speciai case 
of a wire curved in space, we conjectured that, of 
aii projectiveiy-equivaient space curves, humans 
perceive that curve having the most uniform 
curvature and the ieast torsion [2]; i.e., they 
perceive the space curve that is smoothest and most 
planar. Consistent findings were reported in 
recent work by Witkin [5] at MIT on human 
interpretation of the orientation of pianar ciosed 
curves. 

Measures of Smoothness - 
The smoothness of a space curve is expressed 

quantitativeiy in terms of intrinsic 
characteristics such as differentiai curvature (k) 
and torsion (t), as weii as vectors giving 
intrinsic axes of the curve: tangent (T), 
principai normai (N), and binormai (B). A simpie 
measure for the smoothness of a space curve is 
uniformity of curvature. Thus, one might seek the 
space curve corresponding to a given image curve 
for which the integrai of k' (the spatiai 
derivative of k) was minimum. This aione, however, 
is insufficient, since the integrai of k' couid be 
made arbitrariiy smaii by stretching out the space 
curve so that it approaches a twisting straight 
iine (see Figure 4). Uniformity of curvature aiso 
does not indicate whether a circuiar arc in the 
image shouid correspond to a 3-D circuiar arc or to 
part of a heiix. A necessary additionai constraint 
in both cases is that the space curve corresponding 
to a given image curve should be as pianar as 
possibie, or more preciseiy that the integrai of 
its torsion shouid aiso be minimized. 

Integrai 1 expresses both the smoothness and 
pianarity of a space curve in terms of a singie, 
iocaiiy computed differentiai measure d(kB)/ds: 

d(kB/ds)*ds = (kg2 + k2t2)ds (1) 

Intuitiveiy, minimizing this integrai 
corresponds to finding the three-dimensionai 
projection of an image curve that most cioseiy 
approximates a pianar, circular arc, for which k' 
and t are both everywhere zero. 

Recovery Techniques 

A computer modei of this recovery theory was 
impiemented to test its competence. The program 
accepts a description of an input curve as a 
sequence of two-dimensionai image coordinates. 
Each input point, in conjunction with an assumed 
center of projection, defines a ray in space aiong 
which the corresponding space curve point is 
constrained to iie. The program can adjust the 
distance associated with each space curve point by 
siiding it aiong its ray iike a bead on a wire. 
From the resuiting 3-D coordinates, it can compute 
iocal estimates for curvature k, intrinsic axes T, 
N, and B, and the smoothness measure d(kB)/ds. An 
iterative optimization procedure then adjusts 
distance for each point to determine the 
configuration of points that minimize the integrai 
in (1). 

The program was tested using input coordinates 
synthesized from known 3-D space curves so that 
resuits couid be readiiy evaiuated. Correct 3-D 
interpretations were produced for simpie open and 
ciosed curves such as an eiiipse, which was 
interpreted as a tiited circle, and a trapezoid, 
which was interpreted as a tiited rectangie. 
However, convergence was siow and somewhat 
dependent on the initiai choice of z-vaiues. For 
exampie, the program had difficuity converging to 
the "tiited-circie" interpretation of an eiiipse if 
started either with aii z-vaiues in a piane 
paraiiei to the image piane or aii randomized to be 
highiy nonpianar. 

SURFACE INTERPOLATION 

Given constraints on orientation aiong 
extremai and discontinuity boundaries, the next 
probiem is to interpoiate smooth surfaces 
consistent with these boundary conditions. The 
probiem of surface interpoiation is not pecuiiar to 
contour interpretation, but is fundamentai to 
surface reconstruction, since data is generaiiy not 
avaiiabie at every point in the image. We have 
impiemented a soiution for an important case: the 
interpoiation of approximateiy uniformiy-curved 
surfaces from initiai orientation values and 
constraints on orientation [6]. 

The input is assumed to be in the form of 
sparse arrays, containing iocai estimates of 
surface range and orientation, in a viewer-centered 
coordinate frame, ciustered aiong the curves 
corresponding to surface boundaries. The desired 
output is simpiy fiiied arrays of range and surface 
orientation representing the most iikeiy surfaces 
consistent with the input data. These output 
arrays are anaiogous to our intrinsic images [2] or 
Marr's 2.5D sketch [7]. 
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For any given set of input data, an infinitude 
of possibie surfaces can be found to fit 
arbitrariiy weii. Which of these is best (i.e., 
smoothest) depends upon assumptions about the 
nature of surfaces in the worid and the image 
formation process. For exampie, surfaces formed by 
eiastic membranes (e.g., soap fiims) are 
constrained to minimum energy configurations 
characterized by minimum area and zero mean 
curvature; surfaces formed by bending sheets of 
ineiastic materiai (e.g., paper or sheet metai) are 
characterized by zero Gaussian curvature; surfaces 
formed by many machining operations (e.g., pianes, 
cyiinders, and spheres) have constant principai 
curvatures. 

Uniformiy Curved Surfaces 

We concentrate here on surfaces that are 
iocaiiy sphericai or cyiindricai (which have 
uniform curvature according to any of the above 
criteria). These cases are important because they 
require reconstructions that are symmetric in three 
dimensions and independent of viewpoint. Many 
simpie interpoiation techniques faii this test, 
producing surfaces that are too fiat or too peaked. 
An interpoiation aigorithm that performs correctiy 
on sphericai and cyiindricai surfaces can be 
expected to yieid reasonabie resuits for arbitrary 
surfaces. 

Our approach expioits an observation that 
components of the unit normai vary iineariy across 
the images of surfaces of uniform curvature. 
Consider a three-dimensionai sphericai surface, as 
shown in Figure 5. The radius and normai vectors 
are aiigned, and so from simiiar figures we 
have: Nx = x/R, Ny = y/R, Nz = z/R . A simiiar 
derivation for the right circuiar cyiinder is to be 
found in [6]. The point to be noted is that for 
both the cyiinder and the sphere, Nx and Ny are 
iinear functions of x and y, and Nz can be derived 
from Nx and Ny. 

An Interpoiation Technique - 
We have impiemented an interpoiation process 

that expioits the above observations to derive the 
orientation and range over a surface from boundary 
vaiues. It uses paraiiei iocai operations at each 
point in the orientation array to make the two 
observabie components of the normai, Nx and Ny, 
each vary as iineariy as possibie in both x and y. 
This couid be performed by a standard numericai 
reiaxation technique that repiaces the vaiue at 
each point by an average over a two-dimensionai 
neighborhood. However, difficuities arise near 
surface boundaries where orientation is 
discontinuous. We decompose the two-dimensionai 
averaging process into severai one-dimensionai 
ones, by considering a set of iine segments passing 
through the centrai point, as shown in Figure 6a. 
Aiong each iine we fit a iinear function, and thus 
estimate a corrected vaiue for the point. The 
independent estimates produced from the set of iine 
segments are then averaged. Oniy the iine segments 
that do not extend across a boundary are used: in 
the interior of a region, symmetric iine segments 
are used (Figure 6a) to interpoiate a centrai 
vaiue; at boundaries, an asymmetric pattern aiiows 
vaiues to be extrapoiated (Figure 6b). 

The interpoiation process was appiied to test 
cases in which surface orientations were defined 
around a circuiar outiine, corresponding to the 
extremai boundary of a sphere, or aiong two 
paraiiei iines, corresponding to the extremai 
boundary of a right circuiar cyiinder. Essentiaiiy 
exact reconstructions were obtained, even when 
boundary vaiues were extremeiy sparse or oniy 
partiaiiy constrained. Resuits for other smooth 
surfaces, such as eiiipsoids, seemed in reasonabie 
agreement with human perception. 

Current work is aimed at extending the 
approach to partiaiiy constrained orientations 
aiong surface discontinuities, which wiii permit 
interpretation of generai soiid objects. 
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FIGURE 1 LINE DRAWING OF A THREE-DIMENSIONAL 
SCENE (Surface and boundary structure are dis- 
tinctly perceived despite the ambiguity inherent 
in the imaging process.) 

FIGURE 2 THREE-DIMENSIONAL CONFORMATION OF 
LINES DEPICTED IN A LINE DRAWING IS 
INHERENTLY AMBIGUOUS (All of the space 
curves in this figure project into an ellipse in the 
image plane, but they are not all equally likely 

FIGURE 3 AN ABSTRACT THREE-DIMENSIONAL 
SURFACE CONVEYED BY A LINE DRAWING 
(Note that surface orientation is constrained to 
one degree of freedom along discontinuity 
boundaries.) 

FIGURE 4 AN INTERPRETATION THAT MAXIMIZES 
UNIFORMITY OF CURVATURE 

y AXIS 

x AXIS 

FIGURE 5 LINEAR VARIATION OF N ON A SPHERE 

(a) symmetric (b) asymmetric 

FIGURE 6 LINEAR INTERPOLATION OPERATORS interpretations.) 
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