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ABSTRACT

We propose a computational model for
interpreting line drawings as three-dimensional
surfaces, based on constraints on local surface
orientation along extremal and discontinuity
boundaries. Specific techniques are described for
two key processes: recovering the three-
dimensional conformation of a space curve (e.g., a
surface boundary) from its two-dimensional
projection in an image, and interpolating smooth
surfaces from orientation constraints aliong
extremal boundaries.

INTRODUCTION

Our objective is the development of a computer
model for interpreting two-dimensional line
drawings, such as Figure 1, as three-dimensional
surfaces and surface boundaries. Line drawings
depict intensity discontinuities at surface
boundaries, which, in many cases, are the primary
source of surface information available in an
image: i.e., in areas of shadow, complex
(secondary) iilumination, &r specular surfaces
anaiytic photometry is inappropriate.
Understanding how iine drawings convey three-
dimensionality is thus of fundamental importance.

Given a perspectively correct line drawing
depicting discontinuities of smooth surfaces, we
desire as output arrays containing values for
orientation and reiative range at each point on the
implied surfaces. This objective is distinct from
that of earlier work on interpretation in terms of
object models (e.g. [1]) and more basic. No
knowiedge of plants is required to understand the
three-dimensional structure of Figure 1, as can be
demonstrated by viewing fragments out of context
(through a mask, for example).

Ambiguity and Constraints

The central probiem in perceiving line
drawings is one of ambiguity: in theory, each two-
dimensional line in the image could correspond to a
possibie projection of an infinitude of three-
dimensional space curves (see Figure 2). Yet
peopie are not aware of this massive ambiguity.
When asked to provide a three-dimensional
interpretation of an ellipse, the overwheiming
response is a tilted circie, not some bizarrely
twisting curve {or even a discontinuous one) that
has the same image. What assumptions about the
scene and the imaging process are invoked to
constrain to this unique interpretation?
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We observe that aithough all the lines in
Figure 1 look fundamentalily alike, two distinct
types of scene event are depicted: extremal
boundaries (e.g., the sides of the vase), where a
surface turns smoothly away from the viewer, and
discontinuity boundaries (e.g., the edges of the
ieaves), where smooth surfaces terminate or
intersect. Each type provides different
constraints on three-dimensional interpretation.
At an extremal boundary, the surface orientation
can be inferred exactiy; at every point aiong the
boundary, orientation is normal to the line of
gight and to the tangent to the curve in the image
[2 . A discontinuity boundary, by contrast, does
not directliy constrain surface orientation.
However, its local curvature in the image does
provide a statistical constraint on the three-
dimensional tangent of the corresponding space
curve. The locali surface normali is constrained
only to be orthogonal to this tangent, and is thus
free to swing about it as shown in Figure 3.

The ability to infer 3-D surface structure
from extremal and discontinuity boundaries suggests
a three-step model for line drawing interpretation,
anaiogous to those involived in our intrinsic image
model [2 : 1line sorting, boundary interpretation,
and surface interpolation. Each line is first
ciassified according to the type of surface
boundary it represents (i.e., extremal versus
discontinuity). Surface contours are interpreted
as three-dimensional space curves, providing
reiative 3-D distances along each curve; local
surface normals are assigned along the extremal
boundaries. Finally, three-dimensional surfaces
consistent with these boundary conditions are
constructed by interpoiation. (For an aiternative
model, see Stevens [3].) This paper addresses some
important aspects of three-dimensional recovery and
interpolation (see [1] and [4] for approaches to
line classification).

INTERPRETATION OF DISCONTINUITY BOUNDARIES

To recover the three-dimensional conformation
of a surface discontinuity boundary from its image,
we invoke two assumptions: surface smoothness and
general position. The smoothness assumption
implies that the space curve bounding a surface
will also be smooth. The assumption that the scene
is viewed from a general position implies that a
smooth curve in the image resuits from a smooth
curve in space, and not from an accident of
viewpoint. In Figure 2, for example, the sharpiy
receding curve projects into a smooth ellipse from
only one viewpoint. Thus, such a curve would be a
highly improbable three-dimensional interpretation
of an eliipse.



The problem now is to determine which smooth
gpace curve is most likely. TFor the special case
of a wire curved in space, we conjectured that, of
all projectively-equivaient space curves, humans
perceive that curve having the most uniform
curvature and the least torsion [2]; i.e., they
perceive the space curve that is smoothest and most
planar. Consistent findings were reported in
recent work by Witkin [5] at MIT on human
interpretation of the orientation of planar closed
curves.

Measures of Smoothness

The smoothness of a space curve is expressed
quantitatively in terms of intrinsic
characteristics such as differential curvature (k)
and torsion (t), as well as vectors giving
intrinsic axes of the curve: tangent (T),
principal normai (N), and binormal (B). A simple
measure for the smoothness of a space curve is
uniformity of curvature. Thus, one might seek the
space curve corresponding to a given image curve
for which the integral of k' (the spatial
derivative of k) was minimum. This alone, however,
is insufficient, since the integral of k' could be
made arbitrarily small by stretching out the space
curve so that it approaches a twisting straight
line (see Figure 4). Uniformity of curvature also
does not indicate whether a circular arc in the
image should correspond to a 3-D circular arc or to
part of a helix. A necessary additional constraint
in both cases is that the space curve corresponding
to a given image curve should be as planar as
possible, or more precisely that the integral of
its torsion should also be minimized.

Integral 1 expresses both the smoothness and
planarity of a space curve in terms of a single,
ilocally computed differential measure d(kB)/ds:
(k'? + k2t2)ds

a(kB/ds)2ds = (1)

Intuitively, minimizing this integral
corresponds to finding the three~dimensional
projection of an image curve that most closely
approximates a pianar, circular arc, for which k'
and t are both everywhere zero.

Recovery Techniques

A computer model of this recovery theory was
implemented to test its competence. The program
accepts a description of an input curve as a
sequence of two-dimensional image coordinates.
Each input point, in conjunction with an assumed
center of projection, defines a ray in space along
which the corresponding space curve point is
constrained to lie. The program can adjust the
distance associated with each space curve point by
sliding it along its ray like a bead on a wire.
From the resuliting 3-D coordinates, it can compute
local estimates for curvature k, intrinsic axes T,
N, and B, and the smoothness measure d(kB)/ds. An
iterative optimization procedure then adjusts
distance for each point to determine the
confiﬁuration of points that minimize the integral
in (1).
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The program was tested using input coordinates
synthesized from known 3-D space curves so that
results could be readily evaiuated. Correct 3-D
interpretations were produced for simple open and
cliosed curves such as an ellipse, which was
interpreted as a tiited circle, and a trapezoid,
which was interpreted as a tilted rectangle.
However, convergence was slow and somewhat
dependent on the initial choice of z-vaiues. For
example, the program had difficulty converging to
the "tilted-circle" interpretation of an ellipse if
started either with ail z-valiues in a plane
parallel to the image piane or all randomized to be
highly nonplanar.

To overcome these deficiencies, we
experimented with an alternative approach that
invoived more local constraints. A smooth space
curve can be locally approximated by arcs of
circles, and circular arcs project as elliiptic arcs
in an image. From the principal axes of the
eilipse, it is possibie to infer the direction and
magnitude of the tilt of the circle that generated
it. The relative depth at points aliong a surface
contour can thus be determined, in principlie, by
locally fitting an ellipse (five points suffice to
fit a general conic) and then projecting the local
curve fragment back onto the plane of the
corresponding circular arc of space curve.

Assuming orthographic projection, a simpie linear
equation results, relating differential depth aliong
the curve to differential changes in its image
coordinates: dz = a.dx + b.dy .

The ellipse-fitting method yieids correct 3-D
interpretations for ideal image data but, not
surprisingly, breaks down due to large fitting
errors when small amounts of quantization noise are
added. Several alternative approaches that attempt
to overcome these problems by expioiting gliobal
properties (e.g. symmetry, paralielism) are
presently under investigation.

SURFACE INTERPOLATION

Given constraints on orientation aliong
extremal and discontinuity boundaries, the next
problem is to interpolate smooth surfaces
consistent with these boundary conditions. The
probiem of surface interpoliation is not peculiar to
contour interpretation, but is fundamental to
surface reconstruction, since data is generally not
available at every point in the image. We have
implemented a solution for an important case:
interpolation of approximately uniformiy-curved
surfaces from initial orientation values and
constraints on orientation [6].

the

The input is assumed to be in the form of
sparse arrays, containing iocal estimates of
surface range and orientation, in a viewer-centered
coordinate frame, clustered along the curves
corresponding to surface boundaries. The desired
output is simply filled arrays of range and surface
orientation representing the most likely surfaces
consistent with the input data. These output
arrays are analogous to our intrinsic images [2] or
Marr's 2.5D sketch [7].



For any given set of input data, an infinitude
of possible surfaces can be found to fit
arbitrarily well. Which of these is best (i.e.,
smoothest) depends upon assumptions about the
nature of surfaces in the world and the image
formation process. For example, surfaces formed by
elastic membranes (e.g., soap fiims) are
constrained to minimum energy configurations
characterized by minimum area and zero mean
curvature; surfaces formed by bending sheets of
inelastic material (e.g., paper or sheet metal) are
characterized by zero Gaussian curvature; surfaces
formed by many machining operations (e.g., planes,
cylinders, and spheres) have constant principal
curvatures.

Uniformly Curved Surfaces

We concentrate here on surfaces that are
locally spherical or cylindrical (which have
uniform curvature according to any of the above
criteria). These cases are important because they
require reconstructions that are symmetric in three
dimensions and independent of viewpoint. Many
simple interpoliation techniques fail this test,
producing surfaces that are too fiat or too peaked.
An interpolation aigorithm that performs correctly
on spherical and cyliindrical surfaces can be
expected to yield reasonable results for arbitrary
surfaces.

Our approach exploits an observation that
components of the unit normal vary linearly across
the images of surfaces of uniform curvature.
Consider a three-dimensional spherical surface, as
shown in Figure 5. The radius and normal vectors
are aligned, and so from similar figures we
have: Nx = x/R, Ny = y/R, Nz = z/R . A similar
derivation for the right circular cyiinder is to be
found in [6]. The point to be noted is that for
both the cylinder and the sphere, Nx and Ny are
iinear functions of x and y, and Nz can be derived
from Nx and Ny.

An Interpoiation Technique

We have impiemented an interpolation process
that exploits the above observations to derive the
orientation and range over a surface from boundary
values. It uses parallel local operations at each
point in the orientation array to make the two
observable components of the normal, Nx and Ny,
each vary as lineariy as possible in both x and
This could be performed by a standard numerical
reilaxation technique that repiaces the value at
each point by an average over a two-dimensional
neighborhood. However, difficulties arise near
surface boundaries where orientation is
discontinuous. We decompose the two-dimensional
averaging process into several one-dimensional
ones, by considering a set of iine segments passing
through the central point, as shown in Figure 6a.
Along each liine we fit a linear function, and thus
estimate a corrected vaiue for the point. The
independent estimates produced from the set of line
segments are then averaged. Only the iine segments
that do not extend across a boundary are used: in
the interior of a region, symmetric iline segments
are used (Figure 6a) to interpolate a central
value; at boundaries, an asymmetric pattern alliows
values to be extrapoiated (Figure 6b).
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The
cases in
around a
extremal

interpolation process was appiied to test
which surface orientations were defined
circular outliine, corresponding to the
boundary of a sphere, or along two
parallel lines, corresponding to the extremal
boundary of a right circular cylinder. Essentially
exact reconstructions were obtained, even when
boundary values were extremely sparse or only
partially constrained. Results for other smooth
surfaces, such as ellipsoids, seemed in reasonable
agreement with human perception.

Current work is aimed at extending the
approach to partially constrained orientations
along surface discontinuities, which will permit
interpretation of general solid objects.
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FIGURE 1 LINE DRAWING OF A THREE-DIMENSIONAL

SCENE (Surface and boundary structure are dis~
tinctly perceived despite the ambiguity inherent
in the imaging process.)
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FIGURE 2 THREE-DIMENSIONAL CONFORMATION OF
LINES DEPICTED IN A LINE DRAWING IS
INHERENTLY AMBIGUOQUS (All of the space
curves in this figure project into an ellipse in the
image plane, but they are not all equally likely
interpretations.)
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FIGURE 3 AN ABSTRACT THREE-DIMENSIONAL
SURFACE CONVEYED BY A LINE DRAWING
{Note that surface orientation is constrained to
one degree of freedom along discontinuity
boundaries.)

FIGURE 4 AN INTERPRETATION THAT MAXIMIZES
UNIFORMITY OF CURVATURE
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FIGURE 5 LINEAR VARIATION OF N ON A SPHERE
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FIGURE 6 LINEAR INTERPOLATION OPERATORS



