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ABSTRACT 

I analyze the information content of scene 
labels and provide a measure for the complexity of 
line drawings. The Huffman-Clowes label set is 
found to contain surprisingly little additional 
information as compared to more basic label sets. 
The complexity of a line drawing is measured in 
terms of the amount of local labeling required to 
determine global labeling. A bound is obtained on 
the number of lines which must be labeled before a 
full labeling of a line drawing is uniquely deter- 
mined. I present an algorithm which combines 
local sensory probing with knowledge of labeling 
constraints to proceed directly to a labeling 
analysis of a given scene. 

"r INTRODUCTION 

Huffman [4] and Clowes [2] developed (inde- 
pendently) a basic labeling scheme for blocks 
world picture graphs. Given a basic labeling set: 
+ (convex), - (concave), -+ (occluding, region on 
arrowhead side), and a standard set of simplifying 
restrictions on scene content and viewpoint, the 
physically realizable junction labelings are just 
those shown in the last column of Fig. 1. 

Waltz [5] explored the richer label sets 
obtained by including additional information in 
the labels (and loosening the scene restrictions). 
In this paper I explore weaker, cruder label sets. 
I identify three stages of scene labels, of which 
the standard set is the third and richest. I then 
explore the increase in information content 
embodied in each successive stage. Rather sur- 
prisingly I find that there is very little real 
information gain as we move from stage to stage. 
A first stage scene labeling may well determine a 
unique second stage labeling. If it does not, it 
will come quite close to doing so, and I am able 
to identify precisely the additional information 
that is necessary and sufficient to complete the 
second stage labeling. Similar results are 
obtained for the transition from Stage II to Stage 
III. These results supply some theoretical insight 
into the nature and strength of the basic line 
labels and physical constraints. 

I go on in Section III to analyze the amount 
of information required to obtain a Stage I 
labeling. The information is measured in terms of 
the number of line labels which must be determined 
in order for labeling constraints to unambiguously 
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Fig. 1. Junction labelings ot each stage 

imply a unique labeling of the entire line draw- 
ing. In practice the required line labels can be 
obtained by local sensory probing of the physical 
scene. 

I obtain a bound on the number of labels 
required to imply a full labeling of an arbitrary 
line drawing. Finally I discuss an algorithm that 
effectively combines sensory probing for labels 
with knowledge of labeling constraints. The 
algorithm proceeds directly to a full labeling, 
reflecting a presented physical scene, while 
requiring neither a complete sensory scan for 
every line label nor a consideration of all 
possible physical realizations of the line drawing. 
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II LABELING STAGES 

The standard label set is a refinement of a 
cruder categorization of lines as representing a 
physical edge of either one or two visible faces. 
I consider three labeling stages. In Stage I the 
only labels are the numbers 1 and 2, indicating 
the number of associated faces. In Stage II, the 
number 1 is replaced by occlusion labels (+) 
indicating which side the single face is on. They 
will be termed Stage II labels. A Stage II label- 
ing will be one that utilizes -f and 2 labels. In 
Stage III the number 2 is replaced by + and - 
as the distinction is made between convex and 
concave edges. The labels + and - will be termed 
Stage III labels. - A Stage III labeling is one 
that utilizes +, - and -f labels. 

At Stage I there are only 9 distinct junction 
labels. At Stage II the L labelings are differ- 
entiated, at Stage III the fork and arrow labels 
are differentiated. Fig. 1 shows the physically 
realizable labelings at each stage. T labelings 
are added at each stage, but notice that fork and 
arrow labelings do not increase in moving from 
Stage I to Stage II, and the number of L labelings 
does not increase in moving from Stage II to Stage 
III. Thus we really do not know any more about 
forks and arrows at Stage II than we do at Stage 
I, nor more about L's at Stage III than at Stage 
II. Once we have labelled a fork 2,1,1 for 
example, we really know already that it can be 
labelled 2,+,-t. 

My interest in Stage ,J labeling was aroused 
by the work of Chakravarty [1] who utilized inform- 
ation about the number of regions associated with 
lines and junctions, in connection with a more 
elaborate labeling scheme. 

A. The Picture Graph -- 

A blocks world line drawing is, of course, a 
graph. For the purposes of our analysis we will 
modify picture graphs by "separating" T junctions, 
removing T junctions by pulling the shafts away 
from the crossbars. After labeling a scene 
separated in this fashion the T junction labelings 
are easily recovered by rejoining the T junctions 
to form the original scene. The separation 
reflects the fact the information does not pass 
through a T junction , and will permit us to 
identify independent segments of the scene as 
connected components of the (separated) picture 
graph. The segments are independent in the sense 
that each can be labeled independently, a label in 
one segment can have no bearing on possible 
labelings for the other segment. 

The connected components of a graph are the 
maximal connected subgraphs, where a graph is 
connected if there is a chain of edges between any 
two vertices. 

B. Stage I to Stage II 

Theorem 1. Given a picture graph with a 
Stage I labeling (separated at T junctions). 
Further separate the graph by separating L junc- 

tions that have a 2 label on one line, i.e. pulling 
the two sides of each such L apart to remove the 
junction. The Stage I labeling uniquely deter- 
mines a Stage II labeling on all connected compon- 
ents of the resulting graph except those consist- 
ing solely of l-labeled lines, none of which is a 
crossbar of a T. A unique labelinq for the ex- 
ceptions may be determined by specifying the Stage 
II label of a single line in each such component. 
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For proofs of the theorems in this paper see 

C. Stage II to Stage III -- 

Theorem 2. Given a picture graph with a 
Stage II labeling (separated at T junctions). The 
Stage II labeling uniquely determines a Stage III 
labeling on all connected components except those 
consisting solely of 2-labeled lines. A unique 
labeling for the exceptions may be determined by 
specifying the Stage III label of a single line in 
each component, 

III OBTAINING A STAGE I LABELING 

Given labels for a sufficient number of lines 
the physical constraints on the labeling process 
will imply a unique labeling for the remainder of 
the scene. A bound on this "sufficient number" 
will provide a bound on the complexity and poten- 
tial ambiguity of the picture graph, and on the 
effort required to label it. 

The limitations on physically realizable 
labelings summarized in Fig. 1 easily give rise to 
a set of "implication rules" for completing a 
junction labeling given the labelings of one or 
two of its lines. 
2. 

These rules are listed in Fig. 
Note first that labels for shafts of arrows 

and crossbars of T's can be derived immediately 
(2's and l's respectively), without any previous 
labels. Labels for two of the lines of a fork or 
arrow imply the third. (Thus, in effect, a single 
line label, other than for the shaft, determines 
an arrow labeling.) 

=> 2 I\ 

I I 

=> T 

p => yp yp => ‘;1‘ 

Fig. 3. Implication rules. 
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I will say that the labelina of a subset of 
picture graph iines implies the labeling of the 
entire graph, if repeated application of the 
implication rules of Fig. 2;'starting with the 
given subset, leads to a complete, unique labeling 
of t,he graph. The labeling of a subset of lines 
is sufficient if the labeling implies the labeling 
of the graph. A subset of lines is sufficient if 
any consistent lamoftheubset is suffi- 
cient. The minimal number of lines in a suffi- 
cient subset will be called the sufficient number 
of the picture graph. -- The sufficient number must, 
of course, be determined relative to a specified 
label set. We will be dealing with sufficiency 
for Stage I labeling in this paper. 

In Section A I obtain an upper bound on the 
sufficient number of a picture graph. In [3] I 
discuss means of obtaining sufficient sets of 
lines (and thus, bounds on sufficient numbers) for 
individual graphs; I modify one of these methods 
to provide a test for the sufficiency of a set of 
lines or line labels, and a labeling algorithm. 
This algorithm is discussed in Section B. 

Note that deduction can "propagate": we may 
deduce a label for a line which in turn permits 
deduction of the label for an adjoining line, etc. 
There is room for heuristic tuning in choosing 
which lines to probe for labels. 

Fig. 3 demonstrates thi 
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A. A Bound on the Sufficient Number of a Picture ---- 

---- 

Graph 

Theorem 3. The sufficient number of a picture 
graph is no more than the number of forks and 
arrows plus the number of connected components of 

@ => l@l O=>probed 

the graph separated at T's and L's. 

The bound provided by the theorem is tight, 
in the sense that I can exhibit a picture graph 
with sufficient number equal to the given bound. 
A simple triangular figure may consist of all 
occluding lines, or one of the lines may have a 2 
label. Knowing the labeling of two lines is not 
sufficient to imply the label of the third for all 
possible labelings. Thus, the sufficient number 

Fig. 3. Labeling algorithm. 
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B. A Labeling Algorithm II41 
Algorithm: 

1. Obtain any labels that can be deduced by 
repeated application of the implication rules of 
Figure 2. (N t o e arrow shafts and T crossbars 
can be labeled immediately.) 
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2. While unlabeled lines remain: 

2.1. Pick an unlabeled line and "probe" 
the physical scene to determine its label. (This 
information could be obtained from visual, tactile, 
or range finding data.) 
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2.2. Deduce any further labels that can 
be obtained by repeated applications of the 
implication rules. 
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