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ABSTRACT 

We describe an approach to image interpretation which 
uses a dynamically determined interaction of prediction and 
observation. We provide a representational mechansim, built 
on our geometric modeling scheme which facilitates the 
computational processes necessary for image interpretation. The 
mechanism implements generic object classes and specializations 
of models, enables case analysis in reasoning about incompletely 
specified situations, and manages multiple hypothesized 
instantiations of modeled objects in a single image. It is based 
on restriction nodes and quantified variables. A natural partial 
order on restriction nodes can be defined by comparing the 
satisifiability of their constraints. Nodes are arranged in an 
incomplete restriction graph whose arcs represent relations of 
nodes under the partial order. Predictions are matched to 
descriptions by finding maximal isomorphic subgraphs of a 
prediction graph and an observation graph 183 subject to a 
naturally associated infimum of restriction nodes being 
satisifiable. In this manner constraints implied by local two 
dimensional matches of image features to predicted features are 
propagated back to the three dimensional model enforcing 
global consistency. 

I INTRODUCTION 

A. Image Interpretation 

A descriptive process is one which takes an image and 
produces a description of image features and their relations 
found within that image. A predictive process is one which uses 
models of objects expected in an image to predict what features 
and their relations will be present in the image. 

We have constructed a working model-based vision 
system called ACRONYM 183. The interaction between 
prediction and description is stronger than in previous systems. 
A central aspect of ACRONYM is that it interprets images at 
the level of three dimensional models. 

Here we describe a new layer of representation built on 
the ACRONYM system. We briefly describe a mechanism for 
reasoning about incompletely specified geometric situations. All 
this has been implemented. We describe how matching of two 
dimensional features can be mapped back to constrain 
geometric uncertainties in three dimensions in order to obtain a 
*three dimensional understanding of an image. This aspect of 
the new system is still being implemented (June 1980). 
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B, The ACRONYM System 

ACRONYM itself covers a wider range of tasks than 
vision (see 143, [lo]). The reader is referred to 181 for a 
complete overview of the system and a description of geometric 
models based on generalized cones as the nodes of a subpart 
tree. We give here a brief overview of ACRONYM’S vision 
related modules. 

A user interacts with the system via a high level 
modeling language and an interactive editor to provide three 
dimensional descriptions of objects and object classes which are 
viewpoint independent, and to partially mode1 general scenes. 
The result is the object graph. A library provides useful 
prototypes and a graphics module provides valuable feedback 
to the user. 

A rule-based module, the predictor and planner, takes 
models of objects and scenes and produces the prediction graph 
which is a prediction of the appearance of objects expected 
within the scene. It predicts observables in the image over the 
expected range of variations. It provides a plan, or instructions, 
for lower level descriptive processes and the matcher to find 
instances of the objects within the image. The process of 
prediction and planning is repeated as first coarse 
interpretations are found, more predictions are carried out, and 
finer, less ambiguous interpretations are produced. 

The descriptive aspect of ACRONYM is currently 
provided by the edge mapper IS] which describes monocular 
pictures as primitive shape elements (ribbons) and their spatial 
relationships. It is goal-directed and is thus programmed by the 
predictor and planner. The observation graph is the result. As 
with the predictor and planner, the edge mapper may be 
invoked many times during the course of an interpretation as 
finer levels of description become desirable. ACRONYM will 
incorporate stereo and advanced edge-based description 
modules (Baker [23 and Arnold and Binford [II). This will 
provide three dimensional cues directly. 

The matcher interfaces description and prediction. It 
finds maxima1 subgraphs of the observation graph isomorphic 
with subgraphs of the prediction graph, which also meet global 
consistency requirements. In the new implementation the 
matching process is mapped back to three dimensional models. 
Such higher level understanding ensures global consistency and 
enables deductions about three dimensional structures from a 
single monocular image. The matcher re-invokes the predictor 
and planner and the edge mapper to extend the two graphs 
which it is matching in the context of successfully completed 
submatches. This provides direction to both prediction and 
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description and reduces 
each must consider. 

dramatically the number of possibilities 

Lowe 191 has implemented a system which determines 
parameters of models including articulations from 
correspondences of a match. This module provides predictions 
from a tentative interpretation to guide detailed verification. 

We have concentrated on two classes of images in our 
development work; aerial images of airport scenes, and scenes 
of industrial workstations. Together they provide a wide range 
of challenges and force us to look for general methods and 
solutions to problems, since they are sufficiently dis-similar that 
special purpose solutions will fail on one of the two. 

II REPRESENTATION 

A. Requirements 

We have chosen to describe the world to ACRONYM in 
terms of three dimensional models of objects, and their 
expected three dimensional spatial relationships ([Sl contains 
details). The representation is a coarse to fine description of 
objects as subpart trees of generalized cones 133. In this paper 
we are concerned with ways to represent variations within 
models, and how to keep track of multiple inconsistent instances 
which may arise during image interpretation. Thus what 
follows does not rely on generalized cones as the 
representational primitive. 

In structured situations the exact dimensions of objects 
may be known in advance, but their orientation may be 
uncertain. For instance it may be known that a bin is full of a 
particular type of part, but the parts may have been dropped 
in with arbitrary orientations. In an industrial automation 
domain such descriptions may already be available from a 
Computer Aided Design data-base. In less structured 
environments, not even the dimensions of objects will be known 
exactly. For instance for some aerial image interpretation tasks 
it is desirable to represent both the class of wide bodied 
passenger jet aircraft, and particular types of aircraft such as a 
Boeing 747, and even more particular models such as a 747-B. 
Thus it is necessary to represent constrained variations in 
shape, size and even structure (e.g. different aircraft have 
different engine configurations), and constrained variations in 
spatial relations between objects. Consider also that an F-l 11 
aircraft can have variable wing geometry. A manipulator arm 
has even more complex variations in spatial relations between 
its subparts. 

The appearance of an object may change qualitatively, 
rather than merely quantitatively, over the allowed variations 
in its size, shape, structure or orientation relative to the camera. 
Thus it will often be necessary to carry out some case analysis 
in prediction of appearance, and put further constraints on 
models, and to keep such mutually confliciting hypotheses in 
the prediction graph, until such time as they can be confirmed 
or denied by descriptive processes. The prediction graph 
represents case as combinations of components instead of 
explicit enmueration of all cases. 

As interpretation of an image proceeds, constraints on the 
exact values of variations within a model will be derived from 
the matches made in the image. However there may be multiple 

instances of a modeled object within the image. Parts on a 
conveyor belt will have different orientations. Aircraft at a 
passenger terminal will have different lengths and wing spans. 
Thus multiple instances of objects must be representable in the 
interpretation graph. 

B. Representing Variations 

In the following discussion we will consider the problem 
of modeling both the generic class of wide-bodied passenger jet 
aircraft, and specific wide-bodied passenger jet aircraft, such as 
the Boeing 747, Lockheed L-101 1, McDonnell-Douglas DC-10 
and the Airbus Consortium A-300. We will then discuss a 
wider situation where such aircraft are on runways and 
taxiways, and there are undetermined variables in the camera 
model. 

We need to represent both variations in size (e.g. 
different aircraft subclasses will have different fuselage 
lengths), and variations in structure (e.g. different aircraft 
subclasses will have different engine configurations). In both 
cases we want to represent the range of allowable variations. 
We consider the broader problem of quantification of sets. 
Furthermore, there will sometimes be interdependencies 
between these variations (e.g. a scaling between fuselage length 
and wing span). 

Node: FUSELAGE-CONE 
NAME : SIMPLE-CONE 
SPINE: 20005 
SWEEPING-RULE: CONSTANT-SWEEPING-RULE 
CROSS-SECTION: 20004 

Node: Z0005 
NAME: 
TYPE: 
LENGTH: 

SPINE 
STRAIGHT 
FUSELAGE-LENGTH 

Node: CONSTANT-SWEEPING-RULE 
NAME : SWEEPING-RULE 
TYPE: CONSTANT 

Node: 20004 
NAME : 
TYPE: 
RADIUS: 

CROSS-SECTION 
CIRCLE 
FUSELAGE-RADIUS 

Generalized cone representation 
Figure 1. 

of fuselage. 

The primitive representational mechanism used in 
ACRONYM is that of units and slots. Objects are represented 
by units, as are generalized cones, cross-sections, sweeping-rules, 
spines, rotations and translations to name the more important 
ones. Figure 1 shows four units with their slots and fillers from 
a particular ACRONYM model. They describe the generalized 
cone representing the fuselage of the generic wide-bodied 
passenger jet aircraft. Note that units are referred to as “Nodes” 
because they are nodes of the Object graph of figure I. The 
NAME slot is a distinguished slot which all units possess. It 
describes the entity represented by the unit and corresponds to 
the SELF slot of KRL units E51. Units identified by “Z” 
followed by a four digit number are those which were given no 
explicit identifier by the user who modeled the object. The 
modeling language parser has generated unique identifiers for 
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The value of a slot is given by its filler. Slot fillers may 
be explicit, such as “2” or “STRAIGHT”. They can also be 
symbolic constants in the same sense as constants are used in 
programming languages such as PASCAL. Such fillers are fine 
for representing specific completely determined objects and 
situations. Slots may be filled by a quantifier, or any evaluable 
expression involving quantifiers. A quantifier is an identifier 
with constraint 
“FUSELAGE-LENGTH” and 

system (quantification). 
“FUSELAGE-RADIUS” are 

examples of such quantifiers in figure 2. 

The following constraints might be imposed upon 
FUSELAGE-LENGTH and FUSELAGE-RADIUS when 
modeling the class of wide-bodied passenger jet aircraft: 

Node: JET-AIRCRAFT 
NAME 8 OBJECT 
SUBPARTS: (STARBOARD-W I NG PORT-W I NG 

FUSELAGE 1 
QUANTIFIERS: (F-ENG-QUANT ENGINE-LENGTH 

ENGINE-RADIUS 
WING-ATTACHMENT ENG-OUT 
ONE-WING-SPAN 
WING-SWEEP-BACK 
WING-LENGTH WING-RATIO 
WING-WIDTH WING-THICK) 

Node : STARBOARD-W I NG 

(s 40.0 FUSELAGE-LENGTH) (s FUSELAGE-LENGTH 70.0) 
fs 2.5 FUSELAGE-RADIUS) (s FUSELAGE-RADIUS 3.5) 
(s 15.6 (QUOTIENT FUSELAGE-LENGTH FUSELAGE-RADIUS)) 

NAME : OBJECT 
SUBPARTS: ( (SP-DES F-ENG-QUANT e 

STARBOARD-ENGINE)) 
CONE-DESCRIPTOR: STARBOARD-WING-CONE 

These constrain the range of allowable length and radius, 
and express a lower bound on the ratio of length to radius. 

Quantifiers express allowable variations in dimensions of 
objects and in the structure of objects. Figure 2 gives the 
complete subpart tree for a model of generic wide-bodied 
passenger jet aircraft. For brevity, not all the slots of the 
OBJECT units are shown here. The QUANTIFIERS slot is 
explained later. The SUBPARTS slot of an OBJECT unit is 
filled with a list of subparts giving the next level of description 
of the object. Entries in the list can be simple pointers to other 
OBJECT units (e.g. JET-AIRCRAFT has three substructures: 
STARBOARD-WING, PORT-WING and FUSELAGE). 
They can also be more complex such as the single entry for the 
subparts of STARBOARD-WING, which speiifies a 
quantification of subparts called STARBOARD-ENGINE. In 
this case the quantification is the quantifier F-ENG-QUANT. 
Note that PORT-WING has a quantification of 
PORT-ENGINES as subparts, which is represented by the 
same quantifier F-ENG-QUANT. This explicitly represents 
one aspect of the symmetry of the aircraft: it has the same 
number of engines attached to each wing. Constraints on this 
quantifier and on R-ENG-QUANT, the number of rear 
engines might be: 

Node: STARBOARD-ENGINE 
NAME I OBJECT 
CONE-DESCRIPTOR8 PORT-ENGINE-CONE 

Node : PORT-W I NG 
NAME r OBJECT 
SUBPARTS: ( (SP-DES F-ENG-QUANT . 

PORT-ENGINE) 1 
CONE-DESCRIPTOR: PORT-WING-CONE 

Node: PORT-ENGINE 
NAME : OBJECT 
CONE-DESCRIPTOR: PORT-ENGINE-CONE 

Node: FUSELAGE 
NAME : OBJECT 
SUBPARTS: (RUDDER STARBOARD-STABILIZER 

PORT-STABILIZER) 
QUANTIFIERS: (STAB-ATTACH STAB-WIOTH 

STAB-THICK STAB-SPAN 
STAB-SWEEP-BACK 
STAB-RAT 101 

CONE-DESCRIPTOR: FUSELAGE-CONE 

(5 1 F-ENG-QUANT) ts 2 F-ENG-QUANT) 
(s 0 R-ENG-QUANT) (I 1 R-ENG-QUANTI 
(b 3 (PLUS F-ENG-QUANT R-ENG-QUANTI) 

These say that there must be either one or two engines 
on each wing, -zero or one at the rear of the aircraft, and if 
there are two on each wing then there are zero at the rear. 

Symmetry of size (such as length of the wings) can 
likewise be represented by using the same quantifier as a place 
holder in the appropriate pair of slots. 

Node : RUDDER 
NAME : 
SUBPARTS : 

OBJECT 
( (SP-DES R-ENG-QUANT . 

REAR-ENGINE)) 
CONE-DESCRIPTORI RUDDER-CONE 

Node: REAR-ENG I NE 
NAME : OBJECT 
CONE-DESCRIPTORr REAR-ENGINE-CONE 

Node: STARBOARD-STABILIZER 
NAME : OBJECT 

Our compjete model for a generic wide-bodied passenger 
jet aircraft has 28 quantifiers describing allowable variations in 
size and structure. 

CONE-DESCRIPTOR: STARBOARD-STABILIZER-CONE 

Node: PORT-STABILIZER 
NAME t OBJECT 
CONE-DESCRIPTORr PORT-STABILIZER-CONE 

Subpart tree of generic 
Figure 3. 

passenger jet. 
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C. Representing Classes 

It should be clear that to model a subclass of wide-bodied 
passenger jet aircraft we need only provide a different (more 
restrictive) set of constraints for the quantifiers used in ehe 
general model. To model a specific type of aircraft we could 
force the constraints to be completely specific (e.g. (= 
FUSELAGE-LENGTH 52.8)) ). Thus we will not need to 
distinguish between specialization of the general model to a 
subclass, or an individual. 

Given that subclasses use different sets of constraints, the 
problem arises of how to represent multiple subclasses 
simultaneously. We introduce a new type of node to the 
representation: a restriction node. These are the embodiment of 
specialization. 

A restriction node has a set of constraints associated with 
it. If a set of values can be found for all the quantifiers 
mentioned in the constraints such that all the constraints are 
simultaneously satisifed, then we say the restriction node is 
satisifiable. A partial order can be defined on restriction nodes 
by saying that one restriction node is more restrictive than 
another if its set of sets of satisfying values is a subsee of that 
of rhe second node. 

Different views of the generic model. 
Figure 4.- 

For the example of the generic wide-bodied passenger jet 
aircraft the constraints are associated with some restriction 
node, GENERIC- JET-AIRCRAFT say. To represent the class 
of 747s a more reskictive node can be included; e.g.: 

Node: BOEING-747 
NAME: RESTRICTION 
SUPREMA: (GENERIC-JET-AIRCRAFT) 
TYPE: MODEL-SPECIALIZATION 
CONSTRAINTSI <list of constraints> 

It is constructed by taking the constraints associated with 

the GENERIC-JET-AIRCRAFT restriction node, and merging 
in additional constraints to specialize to a BOEING-747. 

A model is always accessed in Ihe context of a restriction 
node. Thus when reasoning about the generic class of 
wide-bodied aircraft, the predictor and planner will access the 
JET-AIRCRAFT model and base its reasoning on the 
constraints given by the GENERIC-JET-AIRCRAFT 
restriction node. When reasoning about Boeing 747s it will base 
its reasoning about the JET-AIRCRAFT model on the 
constraints given by the BOEING-747 restriction node. Figure 
4 conveys the flavor of viewing the JET-AIRCRAFT through 
different restriction nodes to see different models. (And in fact, 
the drawings of the two types of aircraft were produced by 
ACRONYM from the indicated restriction nodes.) In modeling 
subclasses, restriction nodes typically form a tree rather than a 
graph. 

D. Representing Spatial Relations 

Affixments are coordinate transforms between local 
coordinate systems of objects. They are comprised of a rotation 
and a translation. 

Sometimes affixments vary over an object class. For 
instance the in generic wide-bodied passenger jet aircraft model 
the position along the fuselage at which the wings will be 
attached will vary with particular types of aircraft. Articulated 
objects are modeled by variable affixments. Variable 
affixments can also be useful for modeling spatial relationships 
between two objects - for instance an aircraft is on a runway. 

We represent a vector as a triple (a,b,c) where a, b and c 
are scalars. We represent a rotation as a pair <v,m> where v is 
a unit vector, and m a scalar magnitude. An affixment will be 
written as a pair (r,t) where r is a rotation and t a translation 
vector. We will use some special vectors also: 4 Q and f. We 
use * for the composieion of rotations, and QP for the application 
of a rotation to a vector. 

In ACRONYM we use the quantifier mechanism to 
represent affixments which describe a class of coordinate 
transforms. This gives symbolic representations for rotations 
and translations. 

Consider the problem of representing ehe fact that an 
aircraft is somewhere on a runway. Suppose the runway has its 
x axis along its length, the y axis perpendicular at one end, and 
the positive z direction vertically upward. Suppose that the 
coordinate system for the aircraft has its x axis running along 
the spine of the fuselage and has its t axis skyward for the 
standard orientation of an aircraft. Then to represent the 
aircraft on the runway we could affix it with the affixment: 

(<f, ORI>, (JET-RUNWAY-X, JET-RUNWAY-Y, 011 

where ORI, JET-RUNWAY-X and JET-RUNWAY-Y are 
quantifiers with the following constraints: 

(I 0 JET-RUNWAY-X) (ls JET-RUNWAY-X RUNWAY-LENGTH) 
(5 0 JET-RUNWAY-Y) (< JET-RUNWAY-Y RUNWAY-WIDTH) 

Notice that OR1 is unconstrained. The aircraft is 
constrained to be on the runway, in the normal orientation for 
an aircraft (e.g. not upside down), but it does not constrain the 
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direction in which the aircraft is pointed. If we wished to 
constrain the aircraft to approximately line up in the direction 
of the runway we could include a constraint on the quantifier 
ORI, allowing for some small uncertainty. In general, 
constraints on a single quantifier may derive from different 
coordinate systems. 

III PREDICTION AND MATCHING 

The left most rotation corresponds to a rotation in the 
image plane and can be ignored when predicting image shape - 
i.e. shape is invariant with respect to rotation in the image 
plane. The right most rotation expression is applied directly to 
the cylindrical tool. But it is a rotation about the x axis, which 
is the linear axis of a cylinder in our representation 181 and the 
appearance of a cylinder is invariant with respect to a rotation 
about its linear axis. Thus for shape prediction we need only 
consider: 

<y^,TILT> 

A. Using Constraints 

Prediction consists of examining the model in order to 
find features which are invariant over the range of variations 
in the model Es], or over a sufficient range to allow a small 
number of cases. A mixture of reasoning directly about the 
model, and reasoning about the constraints is needed to find 
invariants. 

If ‘TILT is sufficiently constrained (as in this example) it 
may be possible to predict the shape directly. The prediction 
takes the form of expected image features, their relations, and 
what constraints local matches to such features produce on the 
three dimensional model. See section III-C for an example. But 
note here that the prediction is a conjunction of expected 
features. 

B. Adding Constraints 

Electric Screwdriver and Holder 
Figure 5. 

If TILT in the above example is not sufficentiy 
constrained there may be more than one qualitatively different 
shape possible for the cylinder (e.g. an end view of a cylinder is 
quite different from a side view). If so it is necessary to make a 
disjunction of predictions. Note however, that ail views need 
not be explicitly expanded - they can still share much structure. 

Consider the electric screwdriver holder and electric 
screwdriver in figure 5. This is a display of an ACRONYM 
model of a tool for the Stanford hand-eye table. The position 
and orientation (about the vertical axis) are not known. Neither 
are the exact camera pan and tilt known. 

Under these conditions the expression for the orientation 
of the screwdriver tool relative to the camera, as obtained 
directly from the model, is: 
cx^, TI LT>YK<Q, (- PAN) .*<Z?, 3n/Z>r~<y^, 3n/2>*I a<f,ORI >* 

I *<(j, 3n/2>r#<y^, n/2>*<& n/2>*1 *I *I *I 

Each prediction is associated with a new, more restrictive 
restriction node. It is obtained by adding a new constraint 
which restricts the model sufficiently to necessitate only a single 
prediction. Figure 5 gives an indication of the structure of a 
local prediction, with two different cases considered. Not 
indicated in that diagram are arcs between the feature 
predictions which specify relations which should hold between 
instances of those features in the image. 

R..LrlCLlm u&m 
corm PredlCLlon 

where I is the identity rotation, PAN and TILT are 
quantifiers associated with the camera orientation, and OR1 is 
the unconstrained orientation of the screwdriver holder about 
the vertical axis. 

We have implemented a set of rules in ACRONYM 
which simplify such expressions to a canonical form, using 
identities for re-ordering products of rotations. The details can 
be found in 173. The canonical form aids in the detection of 
invariants. E.g. the above expression is transformed to the 
equivalent expression: 

<f,3n/Z>r<~,TILT>*<~, (+ PAN (- ORi))> 

W/l/ 

L oca I Graph 

Strut ture [or 

feeture Predlctlms cone appearance 

predfct ton. 

Figure 5 

Consider the problem of predicting the appearance of the 
cylinder in the image. We outline below the chain of reasoning 
intended for ACRONYM. (The previous predictor and 
planner rule set carried out a slightly less general but still 
powerful line of reasoning. For instance from the knowledge 
that the aircraft is on the runway ACRONYM deduces its 
image in an aerial photograph is determined up to a rotation 
about the vertical plus a translation. The rules necessary for a 
class of computations including the simple example below will 
be implemented over summer 1980.) 

C. Geclerating Restrictions During Matching 

In this section we give an example of an image 
prediction which generates restriction nodes during matching. 
We predict the appearance of a ribbon generated by the 
fuselage of figure I in an aerial image. A prediction says what 
a match of a local feature must imply about both the observed 
feature, and the aspect of the object whose image generated 
that feature. Checking this implication (deciding whether the 
new restriction node is satisfiable) provides an acceptance test 

25 



for a hypothesized match. 

For a projective imaging system the observed distance m 
between two points distance 1 apart on the ground is given 
(approximately) by: 

Cl 
m E -- 

h 
where c is a constant dependent on the focal distance of the 
camera and h is the height of the camera above ground. Thus 
if the camera is at height HEIGHT (a quantifier) and Ml and 
M2 are the measurements obtained for length and width from 
a hypothesized match of a ribbon in the observation graph, 
then the following constraints must hold if the match is correct: 

1. (- Ml (QUOTIENT (TIMES CAM-CONST FUSELAGE-LENGTH) 
HEIGHT) 1 

2. (= H2 KtUOTIENT 
(TIMES 2 CAM-CONST FUSELAGE-RADIUS) 
HEIGHT) 1 

In general Ml and M2 will not be given exactly by the 
observation graph, rather an interval estimate will be supplied. 
Thus they can be represented by quantifiers with constraints 
on their upper and lower bounds. If CAM-CONST is known 
in advance its numeric value can be substituted into the 
constraints generated by the match. If it too is a quantifier, 
then it is just one more constrained unknown in the system. At 
the time of hypothesizing a match, a new restriction node is 
generated by adding*constraints 1 and 2 to the const aints of 
the restriction node associated with the prediction (see figure 5). 
If the new node can be shown to be unsatisfiable then the 
match is rejected. 

The following is not meant to indicate a proposed 
reasoning chain for ACRONYM. Rather it is illustrative of 
how constraints can imply that a hypothesized match is 
incorrect. Suppose for some hypothesized match, where 
CAM-CONST is known to be 100.0, the observed Ml lies 
between 4.0 and 5.0. Then given the constraints on the fuselage 
size of section II-B, the height of the camera must be between 
800.0 and 1750.0 due to constraint 1 above. If this is 
inconsistent with a priori constraints on HEIGHT the match 
can be rejected. In fact a priori constraints on HEIGHT may 
also put further restrictions on the possible range for 
FUSELAGE-LECNTH. Similarly measurement M2 and 
constrairit 2 above will lead to restrictions on HEIGHT. If 
these restrictions are inconsistent with the 800.0 to 1750.0 
bounds already obtained the match should be rejected. 

D. From Local to Global 

After each phase of local matching, the matcher 
combines local matches into more global interpretations. This 
involves finding consistent subgraphs of matches. Previously 
consistency has only concerned the existence of arcs describing 
relations between matched ribbons. With the introduction of 
constraints on quantifiers during the ribbon matching process, 
these too must be checked for consistency. 

Constraints on a quantifier at different 
HYPOTHESIS-MATCH restriction nodes may actually refer 
to different quantities in the scene. For instance each potential 
match for an aircraft may have constraints on 
FUSELAGE-LENGTH and on HEIGHT. When combining 

the matches for aircraft to produce an interpretation of the 
image, there is no reason to require that the constraints on 
FUSELAGE-LENGTH at these different nodes be mutually 
consistent. Different instances of wide-bodied passenger jet 
aircraft will be different lengths. However ail the constraints on 
HEIGHT should be mutually consistent, as there is only one 
HEIGHT of the camera. 

Sometimes when constraints on quantifiers actually 
correspond to different quantities in the world, it may be that 
these quantities should have the same value. For instance the 
ENGINE-LENGTH for the port and starboard engines 
correspond to physical measurements of different objects in the 
world. However since aircraft are symmetric the constraints 
given by the matches on possible values of 
ENGINE-LENGTH for each engine should be consistent. 
Thus when clumping the local matches for an aircraft the 
ENGINE-LENGTH constraints from each submatch should be 
checked for consistency. If they are not consistent the particular 
set of local matches should be rejected as inconsistent. 

A slot is provided in object units to represent which 
quantifiers matched at a lower level should be held consistent 
for interpretation of an object. This is the QUANTIFIERS slot 
as shown in figure 2. As the matcher is combining local 
matches it looks up the subpart tree. Any quantifier mentioned 
in a QUANTIFIERS slot of any ancestor of the object has its 
constraints copied into the restriction node for the new more 
global node. As each constraint is introduced it is checked for 
consistency. This process is not quite straightforward. 
Sometimes a constraint on a quantifier involves another 
quantifier which is not being brought into the new match. 
Such is the case of FUSELAGE-LENGTH and HEIGHT in 
the example of the previous section when a global 
interpretation is being made involving many aircraft. Each 
aircraft provides a constraint on HEIGHT, but each is in terms 
of the instance of FUSELAGE-LENGTH of the individual 
aircraft. One solution is to generate a new unique identifier for 
the quantifier which is not to be constrained by new constraints 
imposed. Its role is to ensure the continued satisifiabiiity of the 
local match in light of new global constraints on other 
quantifiers involved in that match. Other solutions exist, which 
may result in constraint inconsistencies being missed in return 
for much simplified constraint analysis. 

IV REMARKS 

We have described a single part of ACRONYM and have 
ignored many important issues involved in the construction of 
a vision system based on the representations given. In 
particular we have not discussed the analytic power necessary 
to decide whether constraint sets are satisfiable. We believe that 
quite weak analytic methods can lead to powerful interpretive 
capabilities even though they fail to detect large classes of 
inconsistencies. Nor have we described in detail the methods to 
carry out the necessary geometric reasoning. These have been 
discussed in E7J which includes explicit rules for symbolic 
geometric reasoning in states of uncertain knowledge. 

We have provided a representational scheme which facilitates 
the computaeionai processes necessary for interpretation. The 
scheme uses restriction graphs to provide specializations of 
models, to enable case analysis in reasoning about incompletely 
specified situations, and to manage multiple hypothesized 
instantiations of modeled objects in a single image. 

26 



ACKNOWLEDGEMENTS 

This research was sponsored by ARPA contract 
MDA-903-76-C-0206 and NSF contract DAR-78 15914. Support 
was also provided by the ALCOA foundation. 

REFERENCES 

111 Arnold, R. David and Thomas 0. Binford, “Geometric 
Constraints in Stereo Vision,” Proc. SPIE Meeting, San Diego, 
July 1980. 

C21 Baker, H. Harlyn, “Edge Based Stereo Correlation,” Proc. 
ARPA Image Understanding Workshop, Baltimore, Apr. 1980, 
168- 175. 

131 Binford, Thomas O., “Visual 
Invited paper at IEEE Systems 
.Con.erence, Miami, Dec. 1971. 

Perception by Computer,” 
Science and Cybernetics 

141 Einford, Thomas O., Proc. NSF Grantees Conference, 
Cornell Univ., Sep. 1979. 

151 Bobrow, Daniel G. and Terry Winograd, “An Overview of 
KRL, a Knowledge Representation Language,” Cognitive 
Science 1, 1977, 3-46. 

161 Brooks, Rodney A., “Goal-Directed Edge Linking and 
Ribbon Finding,” PYOC. ARPA tmage Understanding Worhshop, 
Palo Alto, Apr. 1979, 72-78. 

171 Brooks, Rodney A. and Thomas 0. Binford, “Representing 
and Reasoning About Partiatiy Specified Scenes,” Proc. ARPA 
Image Understanding WorRshop, Baltimore, Apr. 1980,95-103. 

I81 Brooks, Rodney A., Russell Greiner and Thomas 0. 
Binford, “The ACRONYM Model-Based VisionSystem,” Proc. 
of IJCAI-79, Tokyo, Aug. 1979, 105-l 13. 

191 Lowe, David, “Solving for the Paramters of Object Models 
from Image Descriptions,” Proc. ARPA Image Understanding 
Worksliop, Baltimore, Apr. 1980, 121-127. 

Cl01 Soroka, Barry I., “Debugging Manipulator Programs with 
a Simulator,” to be presented at CAD/CAM8, Anaheim, Nov. 
1980. 

27 


