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ABSTRACT 

A method for using gray-scale statistics for 
the inspection of assemblies is described. A test 
image of an assembly under inspection is registered 
with a model image of a nondefective assembly and 
the two images are corn ared on the basis of two 
statistical tests: a X 3 test of the two marginal 
gray-level distributions and the correlation 
coefficient of the joint distribution. These tests 
are made in local subareas that correspond to 
important structure, such as parts and 
subassemblies. The subareas are compiled in an 
off-line training phase. TheX* measure is most 
sensitive to missi?ng or damaged parts, whereas the 
correlation coefficient is most sensitive to 
mispositioned parts. It is also possible to detect 
overall lighting changes and misregistration with 
these measures. Two examples are presented that 
show how the tests detect two types of defects. 

I INTRODUCTION 

Binary machine-vision techniques have received 
a great deal of attention for industrial inspection 
[1,2,3,41. High-contrast lighting and thresholding 
may be used to obtain an accurate silhouette that 
can be processed at video rates to yield useful 
features, such as area, perimeter, centroid, and 
higher moments. In addition, structural 
information is available in the geometric 
relationships between the local features of the 
outline (holes, corners, and so on). This kind of 
information is sometimes sufficient for some 
industrial automation (IA) tasks, such as part 
identification and acquisition. Other tasks, 
however, are not so easily approached. Although 
many simple parts can be adequately represented by 
a mere outline, most assemblies cannot because they 
are typically composites of several overlapping 
parts or subassemblies. Binary techniques will not 
be effective in such cases because thresholding 
will not, in general, separate the important 
components. Thorough binary inspection of even 
simple parts may not be feasible if one wishes to 
find defects in surface finish or other types of 
defects not limited to the outline. 

Gray-scale techniques have lately received 
more attention [5,6,7]. Compared to binary 
methods, there is a great variety of ways to use 
gray-scale information. This paper describes an 
approach for exploiting gray-scale information for 
inspection in a very basic form. Statistical tests 
of marginal and joint intensity distributions are 
used to compare test assemblies with an ideal model 
assembly. These tests are very efficiently 
computed and they are sensitive to defects and 
discrepancies that are not easily handled in the 
binary domain. 

II REPRESENTATION 

We use a representation that directly 
specifies the expected appearance of the assembly. 
Important structures of the assembly are 
represented as subareas that are tagged for special 
consideration. Using this representation, an image 
of a test assembly is more-or-less directly 
compared to a model with a minimum of 
preprocessing. It is necessary to do some sort of 
photometric and geometric normalization to the test 
image to bring it into correspondence with the 
model. 

At the lowest level, an assembly is 
represented by a gray-scale image. At the highest 
level, an assembly is represented by a list of 
named subareas, each of which corresponds to a 
particularly meaningful segment. Attached to each 
of these subareas are properties that specify the 
important characteristics; these characteristics 
identify the corresponding segment as "good" or 
"defective." Ideally, these subareas could have 
arbitrary shapes and sizes, but, for now, think of 
them as rectangular windows. Each has a specific 
location and size in the normal reference frame. 
The inspection system begins with a representation 
of an ideal assembly, called the model. This may 
be constructed interactively in a training phase. 
Given a low-level representation of a test case 
(i.e., an image), the system proceeds to build a 
high-level representation by comparing segments of 
the test image to segments of the model. 

The first step is to bring the test image into 
geometric registration with the model image. This 
is not strictly necessary. We could directly 
compare regions in the normal reference frame 
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(i.e., in the model image) with regions in the 
translated and shifted reference frame. 
Nevertheless, geometric registration simplifies 
further processing by establishing a one-to-one 
correspondence between model pixels and test 
pixels. 

We have assumed that the positional variation 
of the test assemblies is restricted to translation 
and rotation. We must therefore determine three 
parameters--Ax, Ay, and 6~ . There are several 
ways to approach this problem. Binary techniques 
may be adequate to determine the normalization 
parameters to subpixel accuracy with a system such 
as the SRI vision module [3]. In the gray-scale 
domain, one may search for maximal cross- 
correlation, although this will probably be very 
time-consuming without special hardware. A 
potentially more efficient method is to find 
distinguishing local features in the test image and 
then match them to their counterparts in the model 
b1- Once the translation and rotation has been 
determined it is easy to register the test image 
using a linear interpolation [g]. 

III STATISTICAL COMPARISON 

Two statistical measures that are useful for 
comparing model and test subareas are theX* test 
and the correlationP*coefficient. They are both 
extremely efficient and simple to implement, and 
they are sufficiently different to distinguish two 
broad classes of defects. 

A. The X2 Test - -- 
TheX2 test measures the difference between 

two frequency distributions. Let hm(k) be the 
frequency distribution of gray-scale intensities in 
a model window. Let ht(k) be the frequency 
distribution of a test window. We can consider h 
to be a hypothetical ideal distribution. The X 2m 
test gives a measure of how far h+, deviates from 
the hypothetical distribution h,. The significance 
of the test depends on the number of samples. 

x2 z-y& ((h,(k)-h+) I2 --------------- . 
k ht(k) 

This yields a measure of difference, but, to be 
consistent with what follows, we want a measure of 
similarity. Let 

f = e XL/C 

where c is some positive constant. 7 is a measure 
of the similarity of two distributions (in the X2 
sense). If the distributions are identical, then 
7 will be unity; if they are very different, t 

will be close to zero. 

B. The Correlation Coefficient 

Let hmt be the joint frequency distribution of 
the model and test windows. That is, hmt(u,v) is 
the frequency with which a model pixel has gray 
value u and its corresponding test pixel has gray 
value v. 

Let ml be the mean of h, and m2 be the mean of 
ht. 

Let 0, be the standard deviation 
f12 be the standard deviation of ht. 

of h,, and 

The central moments of the joint distribution 
h mt are 

p(i,j> = 1 
c 

( (Xm(k)-ml)i * (Xt(k)-m2)j) 
--- 
n k 

where X,(k) and Xt(k) are gray values of the kth 
pixel in the model image and and the test image, 
respectively. The correlation coefficient, p , is 

cc OJ) 
P ------- 

7 O2 

p is in the interval [-1,1]. If it has the value 
+l or -1 the total "mass" in the joint frequency 
distribution must lie on a straight line. This 
will be the case when the test image and the model 
image are identical, and P will be +l. In 
general, if there is a linear functional dependence 
between the test and model windows, P will be +l 
(or, in the extremely unlikely case that one window 
is a llnegativetl of the other, P will be -1). If 
the windows are independent distributions, however, 
P will be 0. We can reasonably expect that 
intermediate values will measure the degree of 
dependence between the two windows. 

c. r=p 

7 is not sensitive to the location of pixels. 
It simply measures the degree of similarity between 
two marginal distributions. P , on the other hand, 
measures the degree to which the model pixels agree 
with their corresponding test pixels; therefore, it 
is sensitive to location. This implies that T is 
a good test for missing and severely damaged parts 
(for they are likely to change the distribution of 
the test pixels compared to the distribution of the 
model pixels), while P is a good test for the 
proper location of parts (for misalignment will 
change the joint distribution). 

A systematic change in lighting can also be 
detected. T would be small because the lighting 
change would change the intensity distributions in 
the test windows, but P would be large because the 
test and model distributions would still be well- 
correlated. If this observation were made for only 
one window, it would not be very meaningful. 
However, if we make the reasonable assumption that 
most of the windows locate regions that are not 
defective, this leads to the observation that a 
systematic pattern of small 7 and large P 
indicates a lighting change. 

Small 
detectable 

mi sregistration errors are also 
Small misregistration would produce 



large 7 because the margi .nal d istributions of the 
test windows would not be much different from the IV EXPERIMENTS 
model windows. On the other hand, P would be 
smaller than if there were poor registration 
because the windows would not correlate as well. 
The same result for a single window would be caused 
by a misplaced part, but, again using the 
assumption that most of the windows locate non- 
defective regions, a systematic pattern of large r 
and small P over many windows would indicate an 
overall misregistration. 

These relationships are summarized in Table 1. 

Table 1 

Defect Pattern vs. 7 and P 

* OK Missing Misplaced Lighting Registration 
**++**++~+*****~**+***~**~~~~**~****~~*~~*~~~~**~ 

* * 
r + LARGE SMALL LARGE SMALL LARGE * 
* (SYSTEMATIC) * 

P" LARGE SMALL SMALL LARGE SMALL * 
* )E 

D. A Two-Stage System - 
The gray-scale statistics discussed above 

provide a basis for an integrated minimal system 
for inspection that is composed of two modules--a 
training module that is u&d off-line and that 
allows a human operator to build a high-level 
description of the assembly, and an inspection 
module that matches images of test assemblies to 
the model built in the training phase. In the 
training phase the operator works with an image of 
an ideal assembly, identifying the important parts 
that are likely to be defective and describing the 
modes of defects that may be relevant. For 
example, the location of a particular part may not 
be precisely fixed, but rather permitted to range 
over a rather large area. In this case the 
operator might indicate that 7 (the location 
insensitive measure) is a relevant test, but not 
P. In another case there may exist areas that 
have extremely variable appearance, perhaps because 
of individual part identification markings, and 
these areas might be excluded from testing 
altogether. In the normal case, however, a part 
will be fixed in one location and orientation, 
perhaps with some tolerance, and the operator will 
merely specify allowable limits for 7 and P. 

The on-line inspection phase is entirely 
automatic. The knowledge about the assembly 
collected in the training phase is applied to 
specific test assemblies and a judgment is made as 
to how well what is known fits what is seen. The 
7 and P measures are computed for each area and 

are used to derive probability estimates of the 
various types of defects. 

We have tried the f and p tests on two 
assemblies. 

Figure 1 and Table 2 show the results for a 
water pump. The upper left portion of Figure 1 is 
the "model" image of a nondefective pump in a 
normal position and orientation. Several windows 
representing important parts of the assembly are 
also shown. The upper right portion of Figure 1 is 
a "test" image of a defective assembly. 
dark pulley in the center is missing. 

The round, 
In the lower 

left part of Figure 1 the test image has been 
registered with the model. The lower right image 
is the difference between the model image and the 
registered test image, and has been included to _ 
indicate how close the registration is. Table 2 
shows the t 
windows. Note that 7 and P are both very small 

and p values for the various 

for the (missing) pulley compared to the other 
(nondefective) parts, just as predicted. 7 is 
also small for the window representing the total 
assembly because this includes the defective 
pulley. 

Figure 1. 

Table 2 

Pump Statistics 

* T (c=800) * o * 
*++**++*+**JHC~******************~*** 
Total 8 0492 Y .801 
Pulley + .236 8 .354 * <= Defect 
Link * .981 * .824 * 
spout * -919 * -904 * 
Clip1 * .862 9 0879 * 
Clip2 + 0978 * .780 * 
Clip3 * ,949 * .898 * 

++*~**~**+*+***~***+~~~~~~*~*~~~* 

51 



Figure 2 and Table 3 show the results for a 
hardcopy computer terminal. In this case the write 
head is not positioned in the correct place. Note 
that the window for the "head" includes the entire 
area where it might be located. As predicted, the 
7 value is high, while the P value is small. In 

practice this might not be considered a defect 
because it may be permissible for the head to be 
located anywhere along the track. If this were the 
case, the window could be tagged to indicate that 
P is not a relevant test. 

Figure 2. Terminal 

Table 3 

Terminal Statistics 

Jc 7 (c=800) * p * 
*+++****~++++******8~*~~~**~*~~~~~ 
Total * 0746 * .g10 * 
Platen * 0674 * .868 * 
Head * .890 * 0458 * <= Defect 
Keys * 0740 * 0923 * 

*~~*8~*~~~~~****~~8**~~~~*~~~~~ 
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