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Abstract 

Algorithm design may be defined as the task of finding an 
efficient data and control structure that implements a given input- 
output specification. This paper describes a methodology for 
control structure design, applicable to combinatorial algorithms 
involving search or minimization. The methodology includes an 
abstract process representation based on generators, constraints, 
mappings and orderings, and a set of plans and transformations 
by which to obtain an efficient algorithm. As an example, the 
derivation of a shortest-path algorithm is shown, The methods 
have been developed with automatic programming systems in 
mind, but should also be useful to human programmers. 

1. introduction 

The general goal of automatic programming research is to 
find methods for constructing efficient implementations of high- 
level program specifications. (Conventional compilers embody 
such methods to a very limited extent.) This paper describes some 
methods for the design of efficient control structures, within a 
stepwise refinement paradigm.. in stepwise refinement (see for 
instance Cl,Zl), we view the program specification itself as an 
algorithm, albeit a very inefficient one. Through a chain of 
transformation steps, we seek to obtain an efficient algorithm. 

Specification -+ Alg -+ . . . 3 Algorithm 

Each transformation step preserves input-output equivalence, 
so the final algorithm requires no additlonal verification. 

Algorithm design is a difficult artificial intelligence task 
involving representation and planning issues. First, in reasoning 
about a complicated object like an algorithm it is essential to 
divide it into parts that interact in relatively simple ways. We 
have chosen asynchronous processes, communicating via data 
channels, as an appropriate representation for algorithms. Details 
are in Section II. Second, to avoid blind search each design step 
must be clearly motivated, which in practice requires organization 
of the transformation sequence according to high-level plans. An 
outline of the plans and transformations we have developed is 
given .in Section III, followed in Section IV by the sample 
derivation of a shortest path algorithm. Sections V and VI 
discuss extensions and conclude. 

This methodology is intended for eventual implementation 
within the CHI program synthesis system 131, which is under 
development at Systems Control Inc. 

This research is supported in part by the Defense Advanced 
Research Projects Agency under DARPA Order 3687, Contract 
N00014-79-C-0127, which is monitored by the Office of Naval 
Research. The views and conclusions contained in this paper are 
fhe of the author and should not be interpreted as necessarily 
representing the oflicial policies, either expressed or implied, of Xl, 
DARPA, ONR or the US Government. 

II. Process graph representation of algorithms 

Our choice of representation is motivated largely by our 
concentration on the earlier phases of algorithm design, in which 
global restructurings of the algorithm take place. Most data 
structure decisions can be safely left for a later phase, so we 
consider only simple, abstract data types like sets, sequences and 
relations. More importantly, we observe that conventional high- 
level languages impose a linear order on computations which is 
irrelevant to the structure of many algorithms and in other cases 
forces a premature committment to a particular algorithm. To 
avoid this problem, we have chosen a communicating process 
representation in which each process is a node in a directed graph 
and processes communicate by sending data items along the edges 
which act as FIFO queues. Cycles are common and correspond to 
loops in a conventional language. 

The use of generators (or producers) in algorithm design was 
suggested by 141. Our representation is essentially a specialized 
version of the language for process networks described in I51 
Rather than strive for a general programming language we use 
only a small set of process types, chosen so that: (I) the 
specifications and algorithms we wish to deal with are compactly 
represented, and (2) plans and transformations can be expressed 
in terms of adding, deleting or moving process nodes. The four 
process types are: 

Generator: produces elements one by one on its output edge. 
Constraint: acts as a filter; elements that satisfy the constraint 
pass through. 
Mapping: takes each input element and produces some 
function of it. If the function value is a set its elements are 
produced one by one. 
Ordering: permutes its input elements and produces them in 
the specified order. 

The representation is recursive, a very important property. 
There can be generators of constraints, constraints on constraints, 
mappings producing generators, etc. Most of the same design 
methods will apply to these “meta-processes”. 

To illustrate the representation, we encode the specification 
for our sample problem of finding the shortest path from a to b in 
a graph. 

Idotation and terminology for shortest path. A directed 
graph is defined by a finite vertex set V and a binary relation 
Edge(u,v). A path p is a sequence of vertices (pi . . . p,), in which 
Edge(pi.pbr) holds for each pair. The “.” operator is used to 
construct sequences: (u . . . v).w = (u . . . v w). Every edge of the 
graph is labelled with a positive weight W(u,v) and the weight of 
an entire path is then Weight(p) = W(pi,pz)+...+W(p,l,p,,). The 
shortest path from a to b is just the one that minimizes Weight. 
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A specification should be as simple as possible to ensure 
correctness. Shortest path can be simply specified as: generate ail 
paths from a to b, and select the shortest. We express selection of 
the shortest path in a rather odd way, feeding all the paths into 
an ordering process whose very first output will cause the 
algorithm to stop. The point is that by using a full ordering for 
this comparatively minor task, we can apply all the plans and 
transformations for orderings. As for the paths from a to b, they 
are defined as a certain kind of sequence of vertices, so we 
introduce a generator of all vertex sequences and place constraints 
after it to eliminate non-paths. This completes the specification. 

Constraint methods. The goal of constraint methods is to 
reduce the number of elements generated. The top level plan for 
constraints says to: 
I. propagate constraints through the process graph to bring 

them adjacent to a generator, 
2. incorporate constraints into a generator whenever possible, 

and if the results are not satisfactory, 
3. deduce new constraints beyond those given in the 

specification, and repeat. 

Each of the three subtasks is nontrivial in itself and is 
carried out according to a set of (roughly speaking) intermediate- 
level methods. For (2) an intermediate-level method that we use 
several times in the Shortest Path derivation is: 

Selection of an appropriate internal structure for the 
generator of Sequences(V) is actually part of the design process, 
but to simplify the example we will take as a default the usual 
recursive definition of sequences. The recursion in the definition 
corresponds to a cycle in the process graph. 

The constraint incorporation plan ConstrainComponent. 
ConstrainComponent applies when a constraint on composite 
objects x (sets, sequences, not numbers) is reducible to a constraint 
on a single component c of x, i.e. P(x) e P’(x,). 
ConstrainComponent then gives a plan: 
I. Inside the generator, find the sub-generator of values for 

component c. If necessary, manipulate the process graph to 
isolate this generator. Again, other methods must be called 
upon. 

2. Remove constraint P and add constraint P’ to the sub- 
generator. 

0 csequences (VI 
e 

Ordering methods. Another group of methods is concerned 
with the deduction, propagation and incorporation of orderings 
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uences(VI I on a generated set. These methods are analogous to the methods 
r I 

and vc for constraints but more complicated. In the Shortest Path 
then s. vcsequences (VI 

Map: 
is.v 1 WV) derivation we use a powerful transformation, explained rather 

A sketchily here: 

The generation process starts when the empty sequence () is 
produced on the 3” edge. From the “s” edge it goes to the 
constraint and also to the mapping, which produces the set of all 
one-vertex sequences ().v, for vcV. These are fed back to 
generate two-vertex sequences, and so on. A mapping cycle like 
this is a very common kind of generator. 

111. hods for algorithm design 

The program specification from which design starts is 
typically written as an exhaustive generate-and-test (or generate- 
and-minimize) process, and bears little resemblance to the 
algorithm it will become. The design methods all have the goal 
of incorporating constraints, orderings or mappings into the 
generator, or else the goal of planning or preparing to do so. To 
incorporate a constraint means to modify the generator so that it 
only generates items which already satisfy the constraint; to 
incorporate an ordering means to modify the generator so it 
generates elements directly in that order; and to incorporate a 
mapping f means to generate elements f(x) instead of elements x. 

Accordingly, the methods fall into three main classes, briefly 
described below. Sunerimnosed upon this class division is a 
heirarchy (not strict) &th multi-step’plans at the higher levels and 
a large number of specific syntactic transformations at the bottom. 
The heirarchy is organized according to goals and subgoals. 
Heuristics and deduction rules are required to support the 
planning activity. At the time of writing, a total of about 20 
methods have been formulated not counting low-level syntactic 
transformations. 

The ordering incorporation transformation 
InterleaveOrder. InterleaveOrder applies when an ordering R is 
adjacent to a generator consisting of a mapping cycle, in which 
the mapping f has the property R(x f(x)) for all x. In other 
words, f(x) is greater than x under the ordering R. 
InterleaveOrder moves the ordering inside the mapping cycle and 
adds a synchronization signal to make the ordering and mapping 
operate as coroutines. The ordering produces an element x, the 
mapping receives it and produces its successors f(x) (there would 
be no need for the ordering at all if f were single-valued), then 
the ordering produces the next element and so on. 

Mapping methods. The methods for incorporating a 
mapping into a generator are mostly based upon recent work in 
the “formal differentiation of algorithms” [6] and are related to 
the well-known optimizing technique of reduction in operator 
strength. (They are not used in our sample design.) 

Some syntactic transformations and other methods 
described in this section will appear in the derivation. 

Example: Design of a shortest path ~~go~~t~rn 

not 

In the design which follows, the specification will be 
transformed from an inefficient generate-and-minimize scheme 
into a dynamic programming algorithm. The final algorithm 
grows paths out from vertex a, extending only the shortest path to 
each intermediate vertex, until reaching b. Of necessity we omit 
many details of the design. 



IV. 1. Constraint methods. 

Since the specification’s constraints are already next to the 
generator (step i), the overall plan for constraints says to try to 
incorporate them (step 2.) We will follow the heuristic of 
incorporating the strongest constraint first. Right now, the 
algorithm reads 

Incorporate the Edge constraint. More detail will be shown 
in this first step than in later derivation steps. 
ConstrainComponent applies because once a vertex Si has been 
added to a skquence, -the constraint Edge(Si,Sk,) reduces to a 
constraint on the single component Si+lm (This reasoning step is 

really the application of another method, not described here.) Step 
(I) in the Co ns raincomponent t plan says to find the generator of 
values for components Si+l* Though we have written it in linear 
form for convenience, the expression (s.v 1 vcV} is really a 
generator followed by a mapping. Unfortunately “vcV” generates 
SI as well as the desired siri values, so we have to unroll one cycle 
of the graph to isolate the generator of Si.1 values. (Agaln, we 
have applied methods not described in this paper.) Step (2) is now 
possible and consists in constraining v to satisfy Edge(s,,v). With 
the Edge constraint inzorporated, only paths are now being 
generated so we change s to p in the diagram. 

I Hap: 
(p.v 1 vcV A Edge(pn,vll I 

Incorporate the constraiut that pl=a. Since the pl=a 
constraint refers only to a component of p, ConstrainComponent 
applies again. We constrain v in the first “vcV” generator to be 
equal to a. After simplifying, we obtain 

Incorporate the constraint that pn=b. Once again 
ConstrainComponent applies. This time, however, we are unable 
to isolate a generator for the last vertex of paths. The last vertex 
of one path is the next-to-last vertex of another, and so on. 
ConstrainComponent fails, other methods fail too; we leave the 
pn=b constraint unincorporated. 

Deduce new constraint. In accordance with the general 
constraint plan (step 3) we now try to deduce more constraints. 
One method for deducing new constraints asks: do certain of the 
generated elements have no eflecf whatroever upon the result of the 
algorithm? If the answer is “yes”, try to find a predicate that is 

false on the useless elements, true on others. Motive: if we later 
succeed in incorporating this constraint into the generator, the 
useless elements will never be produced. 

NOW consider the Order + STOP combination. Because all 
it does is select the shortest path, any path which is not shortest 
will have no effect! The corresponding constraint says: 

p is a shortest path from a to b. 

A further deduction gives the even stronger constraint that 
every subpalh of p must be a shortest path (between its endpoints). 
Incorporation of this constraint is complex and is deferred till 
after incorporation of the Weight ordering. 

IV.2. Ordering methods. 

So far paths are generated according to the partial order of 
path inclusion; path p is generated before path q if q = p.u . . .V 
for some vertices u,..,v. We may generate a lot of paths to b 
before generating the shortest one - possibly an infinite number. 
However if the Weight ordering can be incorporated into the 
path generator, then only a single path to b (the shortest one) will 
ever be generated. 

Propagate Ordering. Before applying an incorporation 
method we need to bring the Weight ordering next to the 
generator. Constraints and orderings commute so this is easy. 

Incorporate the ordering into the generator. The 
InterleaveOrder method applies, because Weight(p.v) is greater 
than Weight(p). It moves the ordering from outside the generator 
cycle to inside and also causes the ordering to wait for the 
mapping to finish extending the previous path before it produces 
another. 

Incorporate new constraint. The “p is a shortest path” 
constraint is readily incorporated now: the shortest path to any 
vertex will be the jirsi path to that vertex. Any later path q, with 
the same last vertex q,=p,, can be eliminated by a new constraint 
C(p) = xq. q,=p,. We introduce a mapping to produce these new 
constraints C(p), and now we have a generator of consfrainfs. 
The result of the last three steps is 

The algorithm is now a breadth-first search for a path to b, 
with elimination of non-optimal paths at every vertex. Despite 
various inefficiencies that remain, the essential structure of a 
dynamic programming algorithm is present. One interesting 
improvement comes from incorporating the generated constraints 
C(p) Into the generator of paths, using ConstrainComponent. To 
complete the derivation would require data structure selection and 
finally a translation into some conventional programming 
language. 
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V. Other results and limitations 

Besides the Shortest Path algorithm shown here (and 
variants of it) the algorithm design methods have been used [71 to 
derive a simple maximum finding algorithm and several variants 
on prime finding including the Sieve of Eratosthenes and a more 
sophisticated linear-time algorithm. In these additional 
derivations, no new process types and only a few new methods 
had to be used. Single and multiple processor implementations 
have informally been obtained from process graph algorithms, for 
both prime finding and Shortest Path. 

More algorithms need to be tried before specific claims about 
generality can be made. The intended domain of application is 
combinatorial algorithms, especially those naturally specified as an 
exhaustive search (possibly over an infinite space) for objects 
meeting some stated criteria, which can include being minimal 
with respect to a defined ordering. Backtrack algorithms, sieves, 
many graph algorithms and others are of this kind 181. 

The methods described here are quite narrow in the sense 
that a practical automatic programming system would have to 
combine them with knowledge of: 
1. Standard generators for different kinds of objects. Our 

methods can only modify an existing generator, not design 
one. 

2. Data structure selection and basic operations such as 
searching a list. 

3. Efficiency analysis to determine if an incorporation really 
gives a speedup. 

4. Domain specific facts, e.g., about divisibility if designing a 
prime finding algorithm. 

5. How to carry out the final mapping of process graph into a 
conventional programming (or multiprogramming) language. 

VI. Discussion and Conclusions 

The main lesson to be learned from this work is the 
importance of using an abstract and modular representation of 
programs during algorithm design. Details of data structure, low- 
level operations and computation sequencing should be avoided, 
if possible, until the basic algorithm has been obtained. (Since 
some algorithms depend crucial)y upon a well-chosen data 
structure, this will not always be possible.) Further, it is 
advantageous to represent algorithms in terms of a small number 
of standard kinds of process, for which a relatively large number 
of design methods will exist. The results so far indicate that just 
four standard processes suffice to encode a moderate range of 
different specifications and algorithms. Presumably others will be 
required as the range is extended, and it is an important question 
whether (or how long) the number can be kept small. A similar 
question can be asked about the design methods. 

One would not expect methods based upon such general 
constructs as generators, constraints, orderings and mappings to 
have much power for the derivation of worthwhile algorithms. 
For instance, if we had explicitly invoked the idea of dynamic 
programming, our derivation of a shortest path algorithm would 
have been shorter. For really difficult algorithms, the general 
methods may be of little use by themselves. We suggest that they 
should still serve as a useful complement to more specific methods, 
by finding speedups (based on incorporation of whatever 
constraints, orderings and mappings may be present) in an 
algorithm obtained by the specific methods. 

As a final issue, it is interesting to speculate how the stepwise 
refinement approach to programming might be used by human 
programmers. Use of a standard set of process types and 
correctness-preserving transformations would be analogous to the 
formal manipulations one performs in solving integrals or other 
equations. If that were too restrictive, perhaps one could use the 
methods as a guide, without attempting to maintain strict 
correctness. After obtaining a good algorithm, one could review 
and complete the design, checking correctness of each 
transformation step. The result would be a formally correct but 
also well-motivated derivation. 
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