
SOME ALGORITHM DESIGN METHODS

Steve Tappel

Systems Control, Inc., 1801 Page Mill Road
Palo Alto, California 94304

and Computer Science Department, Stanford University

Abstract

Algorithm design may be defined as the task of finding an
efficient data and control structure that implements a given input-
output specification. This paper describes a methodology for
control structure design, applicable to combinatorial algorithms
involving search or minimization. The methodology includes an
abstract process representation based on generators, constraints,
mappings and orderings, and a set of plans and transformations
by which to obtain an efficient algorithm. As an example, the
derivation of a shortest-path algorithm is shown, The methods
have been developed with automatic programming systems in
mind, but should also be useful to human programmers.

1. introduction

The general goal of automatic programming research is to
find methods for constructing efficient implementations of high-
level program specifications. (Conventional compilers embody
such methods to a very limited extent.) This paper describes some
methods for the design of efficient control structures, within a
stepwise refinement paradigm.. in stepwise refinement (see for
instance Cl,Zl), we view the program specification itself as an
algorithm, albeit a very inefficient one. Through a chain of
transformation steps, we seek to obtain an efficient algorithm.

Specification -+ Alg -+ . . . 3 Algorithm

Each transformation step preserves input-output equivalence,
so the final algorithm requires no additlonal verification.

Algorithm design is a difficult artificial intelligence task
involving representation and planning issues. First, in reasoning
about a complicated object like an algorithm it is essential to
divide it into parts that interact in relatively simple ways. We
have chosen asynchronous processes, communicating via data
channels, as an appropriate representation for algorithms. Details
are in Section II. Second, to avoid blind search each design step
must be clearly motivated, which in practice requires organization
of the transformation sequence according to high-level plans. An
outline of the plans and transformations we have developed is
given .in Section III, followed in Section IV by the sample
derivation of a shortest path algorithm. Sections V and VI
discuss extensions and conclude.

This methodology is intended for eventual implementation
within the CHI program synthesis system 131, which is under
development at Systems Control Inc.

This research is supported in part by the Defense Advanced
Research Projects Agency under DARPA Order 3687, Contract
N00014-79-C-0127, which is monitored by the Office of Naval
Research. The views and conclusions contained in this paper are
fhe of the author and should not be interpreted as necessarily
representing the oflicial policies, either expressed or implied, of Xl,
DARPA, ONR or the US Government.

II. Process graph representation of algorithms

Our choice of representation is motivated largely by our
concentration on the earlier phases of algorithm design, in which
global restructurings of the algorithm take place. Most data
structure decisions can be safely left for a later phase, so we
consider only simple, abstract data types like sets, sequences and
relations. More importantly, we observe that conventional high-
level languages impose a linear order on computations which is
irrelevant to the structure of many algorithms and in other cases
forces a premature committment to a particular algorithm. To
avoid this problem, we have chosen a communicating process
representation in which each process is a node in a directed graph
and processes communicate by sending data items along the edges
which act as FIFO queues. Cycles are common and correspond to
loops in a conventional language.

The use of generators (or producers) in algorithm design was
suggested by 141. Our representation is essentially a specialized
version of the language for process networks described in I51
Rather than strive for a general programming language we use
only a small set of process types, chosen so that: (I) the
specifications and algorithms we wish to deal with are compactly
represented, and (2) plans and transformations can be expressed
in terms of adding, deleting or moving process nodes. The four
process types are:

Generator: produces elements one by one on its output edge.
Constraint: acts as a filter; elements that satisfy the constraint
pass through.
Mapping: takes each input element and produces some
function of it. If the function value is a set its elements are
produced one by one.
Ordering: permutes its input elements and produces them in
the specified order.

The representation is recursive, a very important property.
There can be generators of constraints, constraints on constraints,
mappings producing generators, etc. Most of the same design
methods will apply to these “meta-processes”.

To illustrate the representation, we encode the specification
for our sample problem of finding the shortest path from a to b in
a graph.

Idotation and terminology for shortest path. A directed
graph is defined by a finite vertex set V and a binary relation
Edge(u,v). A path p is a sequence of vertices (pi . . . p,), in which
Edge(pi.pbr) holds for each pair. The “.” operator is used to
construct sequences: (u . . . v).w = (u . . . v w). Every edge of the
graph is labelled with a positive weight W(u,v) and the weight of
an entire path is then Weight(p) = W(pi,pz)+...+W(p,l,p,,). The
shortest path from a to b is just the one that minimizes Weight.

64

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved.

A specification should be as simple as possible to ensure
correctness. Shortest path can be simply specified as: generate ail
paths from a to b, and select the shortest. We express selection of
the shortest path in a rather odd way, feeding all the paths into
an ordering process whose very first output will cause the
algorithm to stop. The point is that by using a full ordering for
this comparatively minor task, we can apply all the plans and
transformations for orderings. As for the paths from a to b, they
are defined as a certain kind of sequence of vertices, so we
introduce a generator of all vertex sequences and place constraints
after it to eliminate non-paths. This completes the specification.

Constraint methods. The goal of constraint methods is to
reduce the number of elements generated. The top level plan for
constraints says to:
I. propagate constraints through the process graph to bring

them adjacent to a generator,
2. incorporate constraints into a generator whenever possible,

and if the results are not satisfactory,
3. deduce new constraints beyond those given in the

specification, and repeat.

Each of the three subtasks is nontrivial in itself and is
carried out according to a set of (roughly speaking) intermediate-
level methods. For (2) an intermediate-level method that we use
several times in the Shortest Path derivation is:

Selection of an appropriate internal structure for the
generator of Sequences(V) is actually part of the design process,
but to simplify the example we will take as a default the usual
recursive definition of sequences. The recursion in the definition
corresponds to a cycle in the process graph.

The constraint incorporation plan ConstrainComponent.
ConstrainComponent applies when a constraint on composite
objects x (sets, sequences, not numbers) is reducible to a constraint
on a single component c of x, i.e. P(x) e P’(x,).
ConstrainComponent then gives a plan:
I. Inside the generator, find the sub-generator of values for

component c. If necessary, manipulate the process graph to
isolate this generator. Again, other methods must be called
upon.

2. Remove constraint P and add constraint P’ to the sub-
generator.

0 csequences (VI
e

Ordering methods. Another group of methods is concerned
with the deduction, propagation and incorporation of orderings

i f scSe
4

uences(VI I on a generated set. These methods are analogous to the methods
r I

and vc for constraints but more complicated. In the Shortest Path
then s. vcsequences (VI

Map:
is.v 1 WV) derivation we use a powerful transformation, explained rather

A sketchily here:

The generation process starts when the empty sequence () is
produced on the 3” edge. From the “s” edge it goes to the
constraint and also to the mapping, which produces the set of all
one-vertex sequences ().v, for vcV. These are fed back to
generate two-vertex sequences, and so on. A mapping cycle like
this is a very common kind of generator.

111. hods for algorithm design

The program specification from which design starts is
typically written as an exhaustive generate-and-test (or generate-
and-minimize) process, and bears little resemblance to the
algorithm it will become. The design methods all have the goal
of incorporating constraints, orderings or mappings into the
generator, or else the goal of planning or preparing to do so. To
incorporate a constraint means to modify the generator so that it
only generates items which already satisfy the constraint; to
incorporate an ordering means to modify the generator so it
generates elements directly in that order; and to incorporate a
mapping f means to generate elements f(x) instead of elements x.

Accordingly, the methods fall into three main classes, briefly
described below. Sunerimnosed upon this class division is a
heirarchy (not strict) &th multi-step’plans at the higher levels and
a large number of specific syntactic transformations at the bottom.
The heirarchy is organized according to goals and subgoals.
Heuristics and deduction rules are required to support the
planning activity. At the time of writing, a total of about 20
methods have been formulated not counting low-level syntactic
transformations.

The ordering incorporation transformation
InterleaveOrder. InterleaveOrder applies when an ordering R is
adjacent to a generator consisting of a mapping cycle, in which
the mapping f has the property R(x f(x)) for all x. In other
words, f(x) is greater than x under the ordering R.
InterleaveOrder moves the ordering inside the mapping cycle and
adds a synchronization signal to make the ordering and mapping
operate as coroutines. The ordering produces an element x, the
mapping receives it and produces its successors f(x) (there would
be no need for the ordering at all if f were single-valued), then
the ordering produces the next element and so on.

Mapping methods. The methods for incorporating a
mapping into a generator are mostly based upon recent work in
the “formal differentiation of algorithms” [6] and are related to
the well-known optimizing technique of reduction in operator
strength. (They are not used in our sample design.)

Some syntactic transformations and other methods
described in this section will appear in the derivation.

Example: Design of a shortest path ~~go~~t~rn

not

In the design which follows, the specification will be
transformed from an inefficient generate-and-minimize scheme
into a dynamic programming algorithm. The final algorithm
grows paths out from vertex a, extending only the shortest path to
each intermediate vertex, until reaching b. Of necessity we omit
many details of the design.

IV. 1. Constraint methods.

Since the specification’s constraints are already next to the
generator (step i), the overall plan for constraints says to try to
incorporate them (step 2.) We will follow the heuristic of
incorporating the strongest constraint first. Right now, the
algorithm reads

Incorporate the Edge constraint. More detail will be shown
in this first step than in later derivation steps.
ConstrainComponent applies because once a vertex Si has been
added to a skquence, -the constraint Edge(Si,Sk,) reduces to a
constraint on the single component Si+lm (This reasoning step is

really the application of another method, not described here.) Step
(I) in the Co ns raincomponent t plan says to find the generator of
values for components Si+l* Though we have written it in linear
form for convenience, the expression (s.v 1 vcV} is really a
generator followed by a mapping. Unfortunately “vcV” generates
SI as well as the desired siri values, so we have to unroll one cycle
of the graph to isolate the generator of Si.1 values. (Agaln, we
have applied methods not described in this paper.) Step (2) is now
possible and consists in constraining v to satisfy Edge(s,,v). With
the Edge constraint inzorporated, only paths are now being
generated so we change s to p in the diagram.

I Hap:
(p.v 1 vcV A Edge(pn,vll I

Incorporate the constraiut that pl=a. Since the pl=a
constraint refers only to a component of p, ConstrainComponent
applies again. We constrain v in the first “vcV” generator to be
equal to a. After simplifying, we obtain

Incorporate the constraint that pn=b. Once again
ConstrainComponent applies. This time, however, we are unable
to isolate a generator for the last vertex of paths. The last vertex
of one path is the next-to-last vertex of another, and so on.
ConstrainComponent fails, other methods fail too; we leave the
pn=b constraint unincorporated.

Deduce new constraint. In accordance with the general
constraint plan (step 3) we now try to deduce more constraints.
One method for deducing new constraints asks: do certain of the
generated elements have no eflecf whatroever upon the result of the
algorithm? If the answer is “yes”, try to find a predicate that is

false on the useless elements, true on others. Motive: if we later
succeed in incorporating this constraint into the generator, the
useless elements will never be produced.

NOW consider the Order + STOP combination. Because all
it does is select the shortest path, any path which is not shortest
will have no effect! The corresponding constraint says:

p is a shortest path from a to b.

A further deduction gives the even stronger constraint that
every subpalh of p must be a shortest path (between its endpoints).
Incorporation of this constraint is complex and is deferred till
after incorporation of the Weight ordering.

IV.2. Ordering methods.

So far paths are generated according to the partial order of
path inclusion; path p is generated before path q if q = p.u . . .V
for some vertices u,..,v. We may generate a lot of paths to b
before generating the shortest one - possibly an infinite number.
However if the Weight ordering can be incorporated into the
path generator, then only a single path to b (the shortest one) will
ever be generated.

Propagate Ordering. Before applying an incorporation
method we need to bring the Weight ordering next to the
generator. Constraints and orderings commute so this is easy.

Incorporate the ordering into the generator. The
InterleaveOrder method applies, because Weight(p.v) is greater
than Weight(p). It moves the ordering from outside the generator
cycle to inside and also causes the ordering to wait for the
mapping to finish extending the previous path before it produces
another.

Incorporate new constraint. The “p is a shortest path”
constraint is readily incorporated now: the shortest path to any
vertex will be the jirsi path to that vertex. Any later path q, with
the same last vertex q,=p,, can be eliminated by a new constraint
C(p) = xq. q,=p,. We introduce a mapping to produce these new
constraints C(p), and now we have a generator of consfrainfs.
The result of the last three steps is

The algorithm is now a breadth-first search for a path to b,
with elimination of non-optimal paths at every vertex. Despite
various inefficiencies that remain, the essential structure of a
dynamic programming algorithm is present. One interesting
improvement comes from incorporating the generated constraints
C(p) Into the generator of paths, using ConstrainComponent. To
complete the derivation would require data structure selection and
finally a translation into some conventional programming
language.

66

V. Other results and limitations

Besides the Shortest Path algorithm shown here (and
variants of it) the algorithm design methods have been used [71 to
derive a simple maximum finding algorithm and several variants
on prime finding including the Sieve of Eratosthenes and a more
sophisticated linear-time algorithm. In these additional
derivations, no new process types and only a few new methods
had to be used. Single and multiple processor implementations
have informally been obtained from process graph algorithms, for
both prime finding and Shortest Path.

More algorithms need to be tried before specific claims about
generality can be made. The intended domain of application is
combinatorial algorithms, especially those naturally specified as an
exhaustive search (possibly over an infinite space) for objects
meeting some stated criteria, which can include being minimal
with respect to a defined ordering. Backtrack algorithms, sieves,
many graph algorithms and others are of this kind 181.

The methods described here are quite narrow in the sense
that a practical automatic programming system would have to
combine them with knowledge of:
1. Standard generators for different kinds of objects. Our

methods can only modify an existing generator, not design
one.

2. Data structure selection and basic operations such as
searching a list.

3. Efficiency analysis to determine if an incorporation really
gives a speedup.

4. Domain specific facts, e.g., about divisibility if designing a
prime finding algorithm.

5. How to carry out the final mapping of process graph into a
conventional programming (or multiprogramming) language.

VI. Discussion and Conclusions

The main lesson to be learned from this work is the
importance of using an abstract and modular representation of
programs during algorithm design. Details of data structure, low-
level operations and computation sequencing should be avoided,
if possible, until the basic algorithm has been obtained. (Since
some algorithms depend crucial)y upon a well-chosen data
structure, this will not always be possible.) Further, it is
advantageous to represent algorithms in terms of a small number
of standard kinds of process, for which a relatively large number
of design methods will exist. The results so far indicate that just
four standard processes suffice to encode a moderate range of
different specifications and algorithms. Presumably others will be
required as the range is extended, and it is an important question
whether (or how long) the number can be kept small. A similar
question can be asked about the design methods.

One would not expect methods based upon such general
constructs as generators, constraints, orderings and mappings to
have much power for the derivation of worthwhile algorithms.
For instance, if we had explicitly invoked the idea of dynamic
programming, our derivation of a shortest path algorithm would
have been shorter. For really difficult algorithms, the general
methods may be of little use by themselves. We suggest that they
should still serve as a useful complement to more specific methods,
by finding speedups (based on incorporation of whatever
constraints, orderings and mappings may be present) in an
algorithm obtained by the specific methods.

As a final issue, it is interesting to speculate how the stepwise
refinement approach to programming might be used by human
programmers. Use of a standard set of process types and
correctness-preserving transformations would be analogous to the
formal manipulations one performs in solving integrals or other
equations. If that were too restrictive, perhaps one could use the
methods as a guide, without attempting to maintain strict
correctness. After obtaining a good algorithm, one could review
and complete the design, checking correctness of each
transformation step. The result would be a formally correct but
also well-motivated derivation.

Acknowledgements.

Many helpful ideas and criticisms were provided by Cordell
Green, Elaine Kant, Jorge Phillips, Bernard Mont-Reynaud, Steve
Westfold, Tom Pressburger and Sue Angebranndt. Thanks also
to Bob Floyd for sharing his insights on algorithm design.

References

I. Baiter, Robert; Goldman, Neil: and Wile. David. “On the
transformational implementation approach to programming”,
Proc. 2nd Int’l Conference on Software Engineering (1976)
337-344.

2

3

4.

5

6,

7.

8.

9.

Barstow. David R. Knowledge Based Program Construction,
Elsevier North-Holland, New York, 1979.
Phillips, Jorge and Green, Cordell. “Towards Self-Described
Programming Environments”, Technical Report, Computer
Science Dept., Systems Control, Inc., Palo Alto, California,
April 1980.
Green, Cordell and Barstow, David R. “On Program

Synthesis Knowledge”, Arti.cial Intelligence, 103 (1978) 24 I -
279.
Kahn, Gilles and MacQueen, David B. “Coroutines and

Networks of Parallel Processes”, lnformafion Processing 77,
IFIP, North-Holland Publishing Company, Amsterdam,
(1979) 993-998.
Paige, Robert. “Expression Continuity and the Formal

Differentiation of Algorithms”, Courant Computer Science
Report x5, (1979) 269-658.
Tappel, Steve. “Algorithm Design: a representation and

methodology for control structure synthesis”, Technical
Report, Computer Science Dept., Systems Control, Inc., Palo
Alto, California, August 1980.
Reingold. Edward M., Nievergelt. Jurg, and‘ Deo, Narsingh.
Combinatorial Algorithms: Theory and Practice, Prentice-Hall
Inc., Englewood Chffs, New Jersey, 1977.

Elschlager, Robert and Phillips, Jorge. “Automatic
Programming” (a section of the Handbook of Artificial
Intelligence, edited by Avron Barr and Edward A.
Feigenbaum), Stanford Computer Science Dept., Technical - --_ _--_
Report 758, 1979.

10. Floyd, R. W. “The Paradigms of Programming” (Turing
Award Lecture), CACM 22:s (1979) 455-460.

67

