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1. INTRODUCTION 
This paper focuses on a major problem faced by the user of a 

semi-automatic, transformation-based program-development 
system: management of low level details. I will argue that it is 

feasible to take some of this burden off of the user by 

automating portions of the development sequence. A prototype 

system is introduced which employs knowledge of the 

transformation domain in achieving a given program goal state. It 

is assumed that such a system will run in a real environment 
containing a large library of both generalized low level and 

specialized high level transformations. 

2. THE TI APPROACH TO PROGRAM DEVELOPMENT 
The research discussed here is part of a larger context of 

program development through Transformational Implementation 

(or TI) [I, 21. Briefly, the TI approach to programming involves 

refining and optimizing a program specification written in a high 

level specification language (Currently, the GIST program 
specification language [8] is being used for this purpose) to a 
particular base language leg. LISP). Refinement and optimization 

are carried out by applying transformations to program 
fragments. This process is semi-automatic in that a programmer 

must both choose the transformation to apply and the context in 

which to apply it; the TI system ensures that the left hand side 

(LHS) of the transformation is applicable and actually applies the 
transformation. The TI system provides a facility for reverting 

to some previous point in the development sequence from which 

point the programmer can explore various alternative lines of 
reasoning. 

3. CONCEPTUAL TRANSFORMATIONS AND JITTERING 
TRANSFORMATIONS 
In using the TI system, programmers generally employ only a 

small number of high level “conceptual” transformations, ones 

that produce a large refinement or optimization. Examples are 
changing a control structure from iterative to recursive, merging 
a number of loops into one, maintaining a set incrementally, or 
making non-determinism explicit. Typically these 

transformations have complex effects on the program; they may 
even have to interact with the user. 

Although only a relatively small number of conceptual 
transformations are employed in a typical TI development, the 
final sequence is generally quite lengthy. Because the 
applicability conditions of a conceptual transformation may be 
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quite specialized, usually with a number of properties to prove, 

much of the development sequence is made up of lower level 

transformations which massage the program into states where 

the set of conceptual transformations can be applied. I call these 

preparatory steps “jittering” steps. Examples of quite low level 

jittering steps include commuting two adjacent statements or 

unfolding nested blocks. More difficult jittering steps include 

moving a statement within a block from the kth position to the 
first position, merging two statements (eg. conditionals,loops) 

into one, or making two loop generators equivalent. 

4. AN AUTOMATIC JITTERING SYSTEM 
Requiring the programmer to carry out the Jittering process 
detracls from his performance in several ways: it consumes a 
large portion of his time and effort; it disrupts his high level 

planning by forcing him to attend to a myriad of details. There is 
then strong motivation for automating some or all of the 

Jittering process. The following sections will discuss the types 

of mechanisms used to actually implement such a system 
thenceforth known as the Jitterer). 

4.1. BLACK BOX DESCRIPTION 
The Jitterer is initially invoked whenever the TI system is unable 

to match the LHS of a transformation Tk selected by the user. 

The Jitterer’s inputs are 1) the current program state C, 2) a 
goal state G corresponding to the mismatched LHS of Tk, and 3) 

a library of transformations L to use in the jittering process. 

The Jltterer’s return value is either a failure message or a 

program state S matching G and a sequence of instantiated 
transformations from L which when started in C will result in S. 

If the Jltterer is successful, then Tk will be removed from its 

suspended state and applied as specified in state S. 

If G is a conjunction of sub-goals then currently a simple STRIPS 

like approach is employed in solving each in some determined 
order. This approach can be both inefficient and unbale to find 

solwtlons for certain jittering problems. Improving this process, 

possibly using some of the techniques proposed by problem 

solvers in other domains (see Sacerdoti [9] for a survey), 
remains a high priority item for future research. 

4.2. THE GOAL LANGUAGE 
Contained in the TI system is a subsystem called the Differencer 
[53. The Differencer takes as input a current state pattern and a 
goal pattern, and returns a list of difference-descriptions 
between the two (an empty list for an exact match). Each 
element of the list is a description taken at a particular level of 

detail, and is written in a goal language I call GLl. For example, 
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suppose that the Differencer was passed “if P then FOO” as a 

current pattern, and “if Q then SA” as a goal pattern (The 

notation SX stands for a variable pattern matching a single 

statement). The output of the Differencer would be the following 
three descriptions in GLl: CHANGE-PREDICATE(P 0); 

CHANGE-ACTION(“if P then FOO” “if Q then SA”), ie. change from 

one conditional to another without going out of the current 

context; PRODUCE-ACTION-AT-POSITION(“if Q then $A” J), ie. use 

any means necessary, including looking at the surrounding 

context, to produce a conditional matching “if Q then $A” at 
position J, J being bound by the Differencer. The above three 

descriptions form a disjunction of goals, each of which gives a 

slightly wider perspective. Currently the Jitterer attempts to 

solve the most narrow goal first. If it is successful, then control 

returns to TI. If not, it attempts to solve the next higher goal and 

so on until the list is exhausted. 

De fault-bindings: none 

t various tactics 1 
We now must define the individual jittering plans or Tactics 
which will achieve the CHANGE-PREDICATE goal. Each Toceic 
construct is composed of a set of constraints which further limit 

its applicability and an Actron for achieving the matching goal. 

Our three plans become formally 

STRATEGY change-predicate-from-a-to-b 
- _ - 1 . . 
Tactic (1) enlbed 

Applicabhty-condition: none 
Action: POST (EMBED (Predl Pred21) 

Taceic(2) extract 
Applicability-condition: NOT (VARIABLE (Predl I 1 
Action: POST (EXTRACT tPred2 Predl) 1 

Other goals of GLl not included in the above example include 

EMBED, EXTRACT, DELETE, ADD, COMMUTE, DISTRIBUTE, 

PROVE-PROPERTY, FOLD and UNFOLD. Because GLl is the 

language used to both describe pattern differences by the 
Dlfferencer and describe desired goal states by the Jitterer, it 

acts as a common interface between the two. 

5. JiTTERIf’& PLANS 
A small number of jittering plans are capable of solving many of 

the goals of GLl. Suppose we take for example the goal of the 
previous section CHANGE-PREDICATE(P Q). This is a specific 

instance of the more general goal CHANGE-PREDICATE(pattern1 

pattern2). There are three basic plans for solving this more 
general goal: 1) embed pattern1 in patternil, 2) extract pattern1 
from pattern2, or 3) first embed pattern1 in something 

containing pattern2, and then extract pattern2. Since in our case 

each pattern is a simple variable, we can rule out the second 
plan. Similar plans exist for the other two goals of the example. 

In general, jittering plans can be defined for all but the most 

detailed goals of GLl. 

5.1. STRATEGY AND TACTICS 

The plans available for solving a particular goal have been 

organized into a construct I call a STRATEGY. Each of the plans 
is known as a Tactic. Each STRATEGY construct takes the 

following form (see [4], [7] for similar planning constructs in 

other domains.): 

STRATEGY name 
Relevant-goal: goal the strategy matches 
Applicability-condition: used to narrow 

strategy’s scope 
Default-bindings: bind any unbound goal 

parameter 6 
Tactic(l) . . . 
Tactic(n) . . . 

To illustrate, let us package the three plans described informally 

for solving the CHANGE-PREDICATE goal into a STRATEGY 

Tactic (31 embed-and-then-extract 
Applicabihy-condition: none 
Action: 

SEQ (POST (EMBED (Predl 
(#ANY-PRED fr Pred211) 

POST (EXTRACT tPred2 
(#ANY-PRED Predl Pred21 

Here, POST(G) says mark the goal G as a sub-goal to be 

achieved. *ANY-PRED will match to either AND or OR. 

SEQUENCE(A1 A2 . . . An) says execute the list of actions 

scqucntlally; if Ai is of the form POST(G), then do not move on 

to Ai+l until G has been achieved. There exist similar functions 

for executing a sequence of actions in parallel and in disjunctive 
form. In general, an Action can specify an arbitrarily ordered 

list of actions to take to achieve the STRATEGY’S goal. 

5.2. BACKWARD CHAINING 
The transformations available for jittering, along with the 

Tactics introduced through the STRATEGY construct, define the 
methods available for solving a particular goal. Transformations 

are applied in backward chaining fashion: once a 
transformation’s RHS matches a goal G, variables are bound and 

the LHS is instantiated. The Differencer is then called in to see if 
a match exists between the current state and the instantiated 
LHS. If so, then G is marked as achieved by the application of 

the transformation. if there is a mismatch, then the disjunction 
of sub-goals produced by the Differencer will be marked as 

awaiting achievement. 

6. THE JITTERlNG SCHEDULER 
Whenever a new goal is posted (marked to be achieved), the 

Jitterer attaches to it a list of methods (transformations and 

Tactics) which might solve it. It is at this point that the 

Scheduler is called in. The Scheduler first must decide among all 

active goals (ones with at least one untried method) which to 

construcl. Suppose that we wanted to rule out working on goals work on next. Once a goal IS chosen, it must decide which of the 

that attempt to change True to False or False to True, and that untried methods to employ. A set of domain dependent metrics 

we expected both of CHANGE-PREDICATE’s parameters to be which help the Scheduler make an intelligent decision in both 

bound. We would get the following STRATEGY header: cases has been identified. 

STRATEGY change-predicate-from-a-to-b 
Relevant-god: CHANGE-PREDICATE (Predl Pred2) 
.&n!:cability-conditions: 

NOT (Predl=True h Pred2=Fa I se) A 
NOT (Predl-Fa I se A Pred2=True) 

6.1. Choosing among competing goals 

Lcngfh of path: the types of problems presented to the .litterer 

by Ti do not generally involve a large (over 10) number of 

transformation steps. Clcnce, as a path (sequence of 
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transformations) grows 

continuing it decreases. 

over a fixed threshold, the desirability of 

Conflict with high level motivation: if the Scheduler is able to 
determine the user’s current high level goal, it may be able to 

rule out certain goal states as un-productive. For example, if it 

is known that the user is trying to optimize his control structure 

by merging a number of loops into one, it may be unwise to try 
to achieve a sub-goal which produces still another loop. Such a 

sub-goal would be given low priority. 

Ease of achieving: A rough estimate is made of the cost to 

continue the goal by taking the minimum cost of the untried 

methods attached to it. This is a rough estimate because there is 

no easy way to compute exactly the final cost associated with 

any method, or in fact that any method will lead to a solution. 

6.2. Choosing among competing methods 

Ease of application: a rough static estimate of how difficult the 
method may be to apply. In the case of a transformation, how 

complex is the LHS (eg, how many properties must be proven)? 

In the case of a Tactic, how many sub-goals must be achieved? 

User assistance: some methods call for the user to supply 

needed information. The preference is to avoid bothering the 

user as much as possible. 

Side effects: What undesirable actions will a method take besides 

the desired one (a qualitative judgment)? For instance, a method 

which unfolds a large procedure body to produce a certain type 

of goal pattern is seen as having a large side effect, ie. it tends 

to “flatten” the functional structure of the program. On the other 

hand, a method which simply changes a current statement into 

something matching a goal pattern has very little side-effect; it 

does nothing to disturb the surrounding context. Prefer small 

side effects over large ones. 

Tactic ordering rules: a STRATEGY writer may provide rules for 
ordering Tactics. These rules take the form 

“if Condition then Ordering”, where Condition can refer to any 

piece of knowledge known to the STRATEGY at match time and 

Ordering takes the form “Try Tactic(J) before Tactic(K)” or “Try 
TactdN) last”. The Scheduler makes use of this information 
when choosing among competing tactics for a particular goal. 

7. CONCLUSION 
The purpose of this paper has been to present a prototype 
Jitterer with enough domain knowledge to deal competently with 

the types of jittering problems typically encountered in a TI 

environment. The prototype Jitterer described is currently 
being implemented in the Hearsay-ill knowledge representation 
language [3] and represents a preliminary system. Future 
systems will deal much more with performance issues (see for 

example the next section). 

8. FURTHER RESEARCH 
There are generally many ways of achieving a given jittering 

goal. The metrics of section 5 give some help in ordering them. 

Even so, in some cases the Jitterer will produce a solution not 

acceptable to the user. A simple minded approach (and the one 

currently employed) is to keep presenting solutions until the 

user ik satisfied. A better approach is to allow the user to 

specify what he didn’t like about a particular solution and allow 

lhts information to guide the search for subsequent solutions. in 

fact, the user may not want to wait until an incorrect solution 

has been presented, but give jittering guidance when the 

Jitterer is initially invoked (Feather [6] proposes such a 
guidance mechanism for a fold/unfold type transformation 

system). Still another approach may be to “delay” jittering until 
more high level contextual information can be obtained. Both 

user guidance and delayed reasoning are being actively studied 

for inclusion in future jittering systems. 
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