
Automatic Goal-Directed Progrem ‘bvnsformetion

Stephen Fickas

USC/Information Sciences Institute*
Marina del Rey, CA 90291

1. INTRODUCTION
This paper focuses on a major problem faced by the user of a

semi-automatic, transformation-based program-development
system: management of low level details. I will argue that it is

feasible to take some of this burden off of the user by

automating portions of the development sequence. A prototype

system is introduced which employs knowledge of the

transformation domain in achieving a given program goal state. It

is assumed that such a system will run in a real environment
containing a large library of both generalized low level and

specialized high level transformations.

2. THE TI APPROACH TO PROGRAM DEVELOPMENT
The research discussed here is part of a larger context of

program development through Transformational Implementation

(or TI) [I, 21. Briefly, the TI approach to programming involves

refining and optimizing a program specification written in a high

level specification language (Currently, the GIST program
specification language [8] is being used for this purpose) to a
particular base language leg. LISP). Refinement and optimization

are carried out by applying transformations to program
fragments. This process is semi-automatic in that a programmer

must both choose the transformation to apply and the context in

which to apply it; the TI system ensures that the left hand side

(LHS) of the transformation is applicable and actually applies the
transformation. The TI system provides a facility for reverting

to some previous point in the development sequence from which

point the programmer can explore various alternative lines of
reasoning.

3. CONCEPTUAL TRANSFORMATIONS AND JITTERING
TRANSFORMATIONS
In using the TI system, programmers generally employ only a

small number of high level “conceptual” transformations, ones

that produce a large refinement or optimization. Examples are
changing a control structure from iterative to recursive, merging
a number of loops into one, maintaining a set incrementally, or
making non-determinism explicit. Typically these

transformations have complex effects on the program; they may
even have to interact with the user.

Although only a relatively small number of conceptual
transformations are employed in a typical TI development, the
final sequence is generally quite lengthy. Because the
applicability conditions of a conceptual transformation may be

9;
This research was supported by Defense Advaked Research Projects Agency

contract DAHCIS 72 C 0308 Views and conclusions contained in this document are
fhooe of the authors and should not be interpreted as repreeenting the official
opinion or policy of DARPA, the U.S. Government, or any other person or agency
connected wilh them.

quite specialized, usually with a number of properties to prove,

much of the development sequence is made up of lower level

transformations which massage the program into states where

the set of conceptual transformations can be applied. I call these

preparatory steps “jittering” steps. Examples of quite low level

jittering steps include commuting two adjacent statements or

unfolding nested blocks. More difficult jittering steps include

moving a statement within a block from the kth position to the
first position, merging two statements (eg. conditionals,loops)

into one, or making two loop generators equivalent.

4. AN AUTOMATIC JITTERING SYSTEM
Requiring the programmer to carry out the Jittering process
detracls from his performance in several ways: it consumes a
large portion of his time and effort; it disrupts his high level

planning by forcing him to attend to a myriad of details. There is
then strong motivation for automating some or all of the

Jittering process. The following sections will discuss the types

of mechanisms used to actually implement such a system
thenceforth known as the Jitterer).

4.1. BLACK BOX DESCRIPTION
The Jitterer is initially invoked whenever the TI system is unable

to match the LHS of a transformation Tk selected by the user.

The Jitterer’s inputs are 1) the current program state C, 2) a
goal state G corresponding to the mismatched LHS of Tk, and 3)

a library of transformations L to use in the jittering process.

The Jltterer’s return value is either a failure message or a

program state S matching G and a sequence of instantiated
transformations from L which when started in C will result in S.

If the Jltterer is successful, then Tk will be removed from its

suspended state and applied as specified in state S.

If G is a conjunction of sub-goals then currently a simple STRIPS

like approach is employed in solving each in some determined
order. This approach can be both inefficient and unbale to find

solwtlons for certain jittering problems. Improving this process,

possibly using some of the techniques proposed by problem

solvers in other domains (see Sacerdoti [9] for a survey),
remains a high priority item for future research.

4.2. THE GOAL LANGUAGE
Contained in the TI system is a subsystem called the Differencer
[53. The Differencer takes as input a current state pattern and a
goal pattern, and returns a list of difference-descriptions
between the two (an empty list for an exact match). Each
element of the list is a description taken at a particular level of

detail, and is written in a goal language I call GLl. For example,

68

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved.

suppose that the Differencer was passed “if P then FOO” as a

current pattern, and “if Q then SA” as a goal pattern (The

notation SX stands for a variable pattern matching a single

statement). The output of the Differencer would be the following
three descriptions in GLl: CHANGE-PREDICATE(P 0);

CHANGE-ACTION(“if P then FOO” “if Q then SA”), ie. change from

one conditional to another without going out of the current

context; PRODUCE-ACTION-AT-POSITION(“if Q then $A” J), ie. use

any means necessary, including looking at the surrounding

context, to produce a conditional matching “if Q then $A” at
position J, J being bound by the Differencer. The above three

descriptions form a disjunction of goals, each of which gives a

slightly wider perspective. Currently the Jitterer attempts to

solve the most narrow goal first. If it is successful, then control

returns to TI. If not, it attempts to solve the next higher goal and

so on until the list is exhausted.

De fault-bindings: none

t various tactics 1
We now must define the individual jittering plans or Tactics
which will achieve the CHANGE-PREDICATE goal. Each Toceic
construct is composed of a set of constraints which further limit

its applicability and an Actron for achieving the matching goal.

Our three plans become formally

STRATEGY change-predicate-from-a-to-b
- _ - 1 . .
Tactic (1) enlbed

Applicabhty-condition: none
Action: POST (EMBED (Predl Pred21)

Taceic(2) extract
Applicability-condition: NOT (VARIABLE (Predl I 1
Action: POST (EXTRACT tPred2 Predl) 1

Other goals of GLl not included in the above example include

EMBED, EXTRACT, DELETE, ADD, COMMUTE, DISTRIBUTE,

PROVE-PROPERTY, FOLD and UNFOLD. Because GLl is the

language used to both describe pattern differences by the
Dlfferencer and describe desired goal states by the Jitterer, it

acts as a common interface between the two.

5. JiTTERIf’& PLANS
A small number of jittering plans are capable of solving many of

the goals of GLl. Suppose we take for example the goal of the
previous section CHANGE-PREDICATE(P Q). This is a specific

instance of the more general goal CHANGE-PREDICATE(pattern1

pattern2). There are three basic plans for solving this more
general goal: 1) embed pattern1 in patternil, 2) extract pattern1
from pattern2, or 3) first embed pattern1 in something

containing pattern2, and then extract pattern2. Since in our case

each pattern is a simple variable, we can rule out the second
plan. Similar plans exist for the other two goals of the example.

In general, jittering plans can be defined for all but the most

detailed goals of GLl.

5.1. STRATEGY AND TACTICS

The plans available for solving a particular goal have been

organized into a construct I call a STRATEGY. Each of the plans
is known as a Tactic. Each STRATEGY construct takes the

following form (see [4], [7] for similar planning constructs in

other domains.):

STRATEGY name
Relevant-goal: goal the strategy matches
Applicability-condition: used to narrow

strategy’s scope
Default-bindings: bind any unbound goal

parameter 6
Tactic(l) . . .
Tactic(n) . . .

To illustrate, let us package the three plans described informally

for solving the CHANGE-PREDICATE goal into a STRATEGY

Tactic (31 embed-and-then-extract
Applicabihy-condition: none
Action:

SEQ (POST (EMBED (Predl
(#ANY-PRED fr Pred211)

POST (EXTRACT tPred2
(#ANY-PRED Predl Pred21

Here, POST(G) says mark the goal G as a sub-goal to be

achieved. *ANY-PRED will match to either AND or OR.

SEQUENCE(A1 A2 . . . An) says execute the list of actions

scqucntlally; if Ai is of the form POST(G), then do not move on

to Ai+l until G has been achieved. There exist similar functions

for executing a sequence of actions in parallel and in disjunctive
form. In general, an Action can specify an arbitrarily ordered

list of actions to take to achieve the STRATEGY’S goal.

5.2. BACKWARD CHAINING
The transformations available for jittering, along with the

Tactics introduced through the STRATEGY construct, define the
methods available for solving a particular goal. Transformations

are applied in backward chaining fashion: once a
transformation’s RHS matches a goal G, variables are bound and

the LHS is instantiated. The Differencer is then called in to see if
a match exists between the current state and the instantiated
LHS. If so, then G is marked as achieved by the application of

the transformation. if there is a mismatch, then the disjunction
of sub-goals produced by the Differencer will be marked as

awaiting achievement.

6. THE JITTERlNG SCHEDULER
Whenever a new goal is posted (marked to be achieved), the

Jitterer attaches to it a list of methods (transformations and

Tactics) which might solve it. It is at this point that the

Scheduler is called in. The Scheduler first must decide among all

active goals (ones with at least one untried method) which to

construcl. Suppose that we wanted to rule out working on goals work on next. Once a goal IS chosen, it must decide which of the

that attempt to change True to False or False to True, and that untried methods to employ. A set of domain dependent metrics

we expected both of CHANGE-PREDICATE’s parameters to be which help the Scheduler make an intelligent decision in both

bound. We would get the following STRATEGY header: cases has been identified.

STRATEGY change-predicate-from-a-to-b
Relevant-god: CHANGE-PREDICATE (Predl Pred2)
.&n!:cability-conditions:

NOT (Predl=True h Pred2=Fa I se) A
NOT (Predl-Fa I se A Pred2=True)

6.1. Choosing among competing goals

Lcngfh of path: the types of problems presented to the .litterer

by Ti do not generally involve a large (over 10) number of

transformation steps. Clcnce, as a path (sequence of

69

transformations) grows

continuing it decreases.

over a fixed threshold, the desirability of

Conflict with high level motivation: if the Scheduler is able to
determine the user’s current high level goal, it may be able to

rule out certain goal states as un-productive. For example, if it

is known that the user is trying to optimize his control structure

by merging a number of loops into one, it may be unwise to try
to achieve a sub-goal which produces still another loop. Such a

sub-goal would be given low priority.

Ease of achieving: A rough estimate is made of the cost to

continue the goal by taking the minimum cost of the untried

methods attached to it. This is a rough estimate because there is

no easy way to compute exactly the final cost associated with

any method, or in fact that any method will lead to a solution.

6.2. Choosing among competing methods

Ease of application: a rough static estimate of how difficult the
method may be to apply. In the case of a transformation, how

complex is the LHS (eg, how many properties must be proven)?

In the case of a Tactic, how many sub-goals must be achieved?

User assistance: some methods call for the user to supply

needed information. The preference is to avoid bothering the

user as much as possible.

Side effects: What undesirable actions will a method take besides

the desired one (a qualitative judgment)? For instance, a method

which unfolds a large procedure body to produce a certain type

of goal pattern is seen as having a large side effect, ie. it tends

to “flatten” the functional structure of the program. On the other

hand, a method which simply changes a current statement into

something matching a goal pattern has very little side-effect; it

does nothing to disturb the surrounding context. Prefer small

side effects over large ones.

Tactic ordering rules: a STRATEGY writer may provide rules for
ordering Tactics. These rules take the form

“if Condition then Ordering”, where Condition can refer to any

piece of knowledge known to the STRATEGY at match time and

Ordering takes the form “Try Tactic(J) before Tactic(K)” or “Try
TactdN) last”. The Scheduler makes use of this information
when choosing among competing tactics for a particular goal.

7. CONCLUSION
The purpose of this paper has been to present a prototype
Jitterer with enough domain knowledge to deal competently with

the types of jittering problems typically encountered in a TI

environment. The prototype Jitterer described is currently
being implemented in the Hearsay-ill knowledge representation
language [3] and represents a preliminary system. Future
systems will deal much more with performance issues (see for

example the next section).

8. FURTHER RESEARCH
There are generally many ways of achieving a given jittering

goal. The metrics of section 5 give some help in ordering them.

Even so, in some cases the Jitterer will produce a solution not

acceptable to the user. A simple minded approach (and the one

currently employed) is to keep presenting solutions until the

user ik satisfied. A better approach is to allow the user to

specify what he didn’t like about a particular solution and allow

lhts information to guide the search for subsequent solutions. in

fact, the user may not want to wait until an incorrect solution

has been presented, but give jittering guidance when the

Jitterer is initially invoked (Feather [6] proposes such a
guidance mechanism for a fold/unfold type transformation

system). Still another approach may be to “delay” jittering until
more high level contextual information can be obtained. Both

user guidance and delayed reasoning are being actively studied

for inclusion in future jittering systems.

Acknowledgments

I would like to thank Bob Balzer, Martin Feather, Phil London and

Dave Wile for their contributions to this work. Lee Erman and

Neil Goldman have provided willing and able assistance to the

Hearsay Ill implementation effort.

9, REFERENCES

1. Balzer, R., Goldman, N., and Wile, D. On the Transformational
Implementation Approach to programming. Second International
Conference on Software Engineering, October, 1976.

2. Balzer, R. TI: An example. Research Report RR-79-79,
Information Sciences Institute, 1979.

3. Aalzcr, R., Erman, L., London, P., Williams, C. Hearsay-Ill: A
Domain-Independent Framework for Expert Systems. First
National Conference on Artificial Intelligence, 1980.

4. Bulrss-Rozas, J. GOAL: A Coal Oriented Command language
for Int ractue Proff Constructlorr. Ph.D. Th., Computer Science
Dept., Standford University, 1979.

5. Chiu, W. Structure Comparison and Semantic Interpretation of
Differences. First National Conference on Artificial Intelligence, ,
1980.

6. Feather, M. A System For Developing Programs by
Transformatron. Ph.D. Th., Dept. of Artificial Intelligence,
University of Edinburgh, 1979.

7. Friedland, P. Knowledge-based Hierarchical Planning in
Molecular Genetics. Ph.D. Th., Computer Science Dept., Stanford
University, 1979.

8. Goldman, N., and Wile, D. A Data Base specification.
International Conference on the Kntity-Relational Approach to
Systems Analysis and Design, UCLA, 1979.

9. Sacerdoti, E. Problem Solving Tactics. Technical Note 189,
SRI, July 1979.

70

