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AbJrract. Program acquisition is the transformation of a program 
specification into an executable, but not necessarily efficient, 
program that meets the given specification. This paper presents a 
solution to one aspect of the program acquisition problem, the 
incremental construction of program models from informal 
descriptions [II, in the form of a framework that includes (1) a 
formal language for expressing program fragments that contain 
informalities, (2) a control structure for the incremental recognition 
and assimilation of such fragments, and (3) a knowledge base of 
rules for acquiring programs specified with informalities. 

1. Introduction 

The paper describes a LISP based computer system called the 
Program Model Builder (abbreviated “PMB”), which receives 
informal program fragments incrementally and assembles them into 
a very high level program model that is complete, semantically 
consistent, unambiguous, and executable. The program 
specification comes in the form of partial program fragments that 
arrive in any order and may exhibit such informalities as 
inconsistencies and ambiguous references. The program fragment 
language used for specifications is a superset of the language in 
which program models are built. This program modelling language 
is a very high level programming language for symbolic processing 
that deals with such information structures as sets and mappings. 

2. The Problem 

The two key problems faced by PMB come from processing 
fragments that specify programs incrementally and informally. 

The notion of incremental program specification means that the 
fragments specifying a program may be received in an arbitrary 
order and may contain an arbitrarily small amount of new 
information. The user thus has the most flexibility to provide new 
knowledge about any part of the program at any time. For 
example, a single fragment conveying a small number of pieces of 
information is the statement “A is a collection.” This identifies an 
information structure called A and defines it as a collection of 
objects. However, the fragment says nothing about the type of 
objects, their number, etc. These details are provided in program 
fragments occurring before or after this one. 

Informality means that fragments may be incomplete, semantically 
inconsistent, or ambiguous; may use generic operators; and may 
provide more than one equivalent way of expressing a program 
part. An incomplete program model part may be completed either 
by use of a default value, by inference by PMB, or frog later 
fragments from the user. 
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Program model consistency is monitored at all times. PMB tries to 
resolve inconsistencies first; otherwise, it reports them to the user. 
For example, the membership test fragment x E A requires that 
either A have elements of the same type as x (whenever the types 
of R and x finally become known) or their types inferred to be the 
same. 

Because a fragment may possess ambiguities, its interpretation 
depends upon the model context. So PMB specializes a generic 
operator into the appropriate primitive operation, based upon the 
information structure used. For example, part-oflx,A) (a Boolean 
operation that checks if information structure x is somehow 
contained within A) becomes x E R, if A is a collection with 
elements of the same type as X, and an k.componenr if A is a plex 
(record structure). 

PMB is capable of canonization, the transformation of equivalent 
information and procedural structures into concise, high level, 
canonical forms. This allows subsequent automatic coding the 
greatest freedom in choosing implementations. Interesting patterns 
are detected by specific rules set up to watch for them. For 
example, expressions that are quantified over elements of a set are 
canonized to the corresponding expression in set notation. 

3. Control Structure 

The model building problem is to acquire knowledge in the form 
of a program model. The control structure of PMB is based upon 
the “recognition” paradigm 121, in which a system watches for new 
information, recognizes the information based upon knowledge of 
the domain and the current situation, and then integrates the new 
knowledge into its knowledge base. PMB has one key feature: 
subgoals may be dealt with in an order chosen by the user, rather 
than dictated by the system. Subgoals are satisfied either externally 
or internally to PMB. The two cases are handled by the two kinds 
of data driven antecedent rules, response rules and demons, which 
are triggered respectively by the input of new fragments or changes 
in the partial model. When new information arrives in fragments, 
appropriate response rules are triggered to process the information, 
update the model being built, and perhaps create more subgoals 
and associated response rules. Each time a subgoal is generated, an 
associated “question” asking for new fragments containing a 
solution to the subgoal is sent out. This process continues until no 
further information is required to complete the model. To process 
subgoals that are completely internal to PMB, demon rules are 
created that delay execution until their prerequisite information in 
the model has been filled in by response rules or perhaps other 
demons. 

4. Knowledge Base 

PMB has a knowledge base of rules for handling constructs of the 
program modelling language. processing informalities in fragments, 
monitoring consistency of the model, and doing limited forms of 
program canonization. Rules about the modelling language include 
facts about five different information structures, six control 
structures, and approximately twenty primitive operations. The 
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control structures are ones that are common to mose high level 
languages. The modelling language’s real power comes from its 
very high level operators for information structures such as sets, 
lists, mappings, records, and alternatives of these. 

Below are English paraphrases of three rules that exemplify the 
major types of rules used in PMB. Rule I is a response rule for 
processing a new loop. Rule 2 is a demon that checks that the 
arguments of an i~-&~et operation are consistent. Rule 3 is a 
canonization demon that transforms a case into a test when 
appropriate. 

[II A loop consists of an optional initialization, required body, 
and required pairs of exit tests and exit blocks. Each exir test must 
be a Boolean expression occurring within the body. 

[21 Require that the two arguments of an is-J&Jet operation both 
return collections of the same prototypic element. 

[31 If the statement is a case, the case has two condition/action 
pairs, and the first condition is the negation of the second 
condition, then change the case into a test. 

Both response rules and simple demons are procedural. Compound 
demons (i.e., those whose antecedents test more than one object in 
the model) use declarative antecedent patterns that are expanded 
automatically into procedural form by a rule “compiler”. 

5. Example of PMB in Operation 

The model building excerpt below displays (1) growth of the 
program model tree in a fashion that is generally top down, but 
data driven, and (2) completion and monitoring of parts of the 
model by demons. Note that this excerpt does justice neither to the 
concept of arbitrary order 6f fragments nor the types of 
programming knowledge in PMB. 

The trace discusses three program fragments generated from an 
English dialog. Each fragment is followed by a description of how 
it was processed by PMB, a snapshot of the partial model at that 
point, and a list of the outstanding demons. A detailed trace for 
the first fragment shows PMB focusing on individual slots of a 
fragment, creating model templates, and creating subgoals. The 
other fragments emphasize the creation and triggering of demons. 

Names preceding colons are unique template names that allow 
fragments to refer to different parts of the model. Missing parts of 
the partial model are denoted by “???“. Newly added or changed 
lines are denoted by the character ‘I” at the right margin. 

[The excerpt starts after the first fragment has already caused the 
partial program model shown below to be created. It only contains 
the names of the model, CLASSIFY, and the main algorithm, 
“algorithm-body”. No demons exist.] 

Current program model: 

program classify; 
algorithm-body: ??? 

Current demons act ive: None 

[The second fragment describes the top level algoriehm as a control 
structure having type composite and two 
“Input-concept” 

steps called 
and “classify-loop”. This fragment might have 

arisen from a sentence from the user such as “The algorithm first 
inputs the concept and then classifies it.“] 

Inputting fragment: 

algorithm-body: 
begin 

input-concept 
classify-loop 

end 

CA composite is a compound statement with an optional partial 
ordering on the execution of its subparts. The response rule that 
processes the composite creates the following two subgoals, along 
with response rules to handle them (not shown).] 

Processing ALGORITHM-BOOY.TYPE = COMPOSITE 
Creating subgoal: 

ALGORITHM-BOOY.SUBPARTS - 711 
Creating subgoal: 

ALGORITHM-BOOY.OROERINGS = 711 
Done processing ALGORITHM-BOOY,TYPE = COMPOSITE 

[Within the same fragment the two subparts are defined as 
operational units with unique names, but of unknown types. An 
operational unit can be any control structure, primitive operation, 
or procedure call. Two new templates are created and their types 
are requested.1 

Process i ng ALGORI THM-BODY. SUBPARTS = 
(INPUT-CONCEPT CLASSIFY-LOOP) 

Creating template INPUT-CONCEPT with value 
I NPUT-CONCEPT. CLASS - OPERAT I ONAL-UNI T 

Creating subgoal: 
INPUT-CONCEPT.TYPE - 131 

Creating template CLASSIFY-LOOP with value 
CLASSIFY-LOOP.CLASS = OPERATIONAL-UNIT 

Creating subgoal: 
CLASSIFY-LOOP. TYPE = ??? 

Done processing ALGORITHM-BOOY.SUBPARTS = 
(INPUT-CONCEPT CLASSIFY-LOOP) 

[At this point, the 
of the composite.] 

model IS missing the definitions of the two parts 

Current program model: 

program classify; 
begin 

Input-concept: ???; 
classify-loop: ??? 

end 

Current demons active: None 

[The third fragment, which defines “input-concept” to be an input 
primitive operation, is omitted. Information structures from this 
fragment are not shown in the models below. 

The fourth fragment defines the second step of the composite. 
This fragment might have come from “The classificaeion step is a 
loop with a single exit condition.“] 

Inputting fragment: 

classify-loop: 
until exit (exit-condition) 

repeat loop-body 
finally exit: 

endloop 

[This fragment defines a loop that repeats “loop-body” (as yet 
undefined) until a Boolean expression called “exit-condition” is 
true. At such time, the loop is exited to the empty exit block, called 
“exit”, which is associated with “exit-condition”. Since PMB 
doesn’t know precisely where the test of aexit-condition” will be 
located, it is shown separately from the main algorithm below. The 
response rule that processes the loop needs to guarantee that 
“exit-condition” is contained within the body of the loop. Since 
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this can’t be determined until the location of “exit-condition” is 
defined in a fragment, the response rule attaches Demon 1 to the 
template for “exit-condition” to await this event. Similarly, Demon 
2 is created to await the location of “exit-condition” and then put it 
inside a test with an asserl-exit-connlilon as its true branch. This 
will cause the loop to be exited when the exit condition becomes 
true.1 

Current program model8 

program classlf3r; 
begirl 

concept c input(concept#otot~pe, user, concept-prompt); 
until exit 

repeat I 
loop-body: ??? 

finally I 
exit: 

endloop I 
end 

exit-condition: ??? I 

Current demons active: 
Demon 1: awaiting control structure containing 

“ex i t-cond i t i on” I 
Demon 2: awaiting control structure containing 

“ex i t-cond i t i on” I 

[The fifth fragment defines the body of the loop, thus triggering 
the two demons set up previously. A possible source of this 
fragment is ‘The loop first inputs a scene, tests whether the datum 
that was input is really the signal to exit the loop, classifies the 
scene, and then outpu&this classification to the user.“] 

Inputting fragment: 

loop-body: 
begin 

loop-input; 
exit-condition; 
classification; 
output-classification 

end 

[“Loop-body” is a composite with four named steps. PMB now 
knows where “exit-condition” occurs and that it must return a 
Boolean value. Demon I is awakened to find that “exit-condition” 
is located inside the composite “loop-body”. Since this isn’t a loop, 
Demon 1 continues up the tree of nested control constructs. It 
immediately finds that the parent of “loop-body” is the desired 
loop, and succeeds. Demon 2 is also awakened. Since it now 
knows “exit-condition” and its parent, Demon 2 can create a new 
template between them. The demon creates a test with 
“exit-condition” as its predicate and an assert-exit-condition that 
will leave the loop as its true action.] 

Current program mode I : 

program classify; 
begin 

concept t input(concept.$ototype, user, concept-prompt); 
until exit 

repeat 
begin 

loop-input: ???; I 
if exit-condition: ??? 

then assert-exit-conditio(exit); I 
classification: ??!; 
output-classification: ??? 

end 

finally 
exit: 

endloop 
end 

Current demons act i ve: None I 

[At the end of the excerpt, five of 32 fragments have been 
processed.] 

6. Role of PMB in a Program Synthesis System 

PMB was designed to operate as part of a more complete program 
synthesis system with two distinct phases: acquisition and 
automatic coding. In such a system the program model would serve 
as the interface between the two phases. Automatic coding is the 
process of transforming a model into an efficient program without 
human intervention. The model is acquired during the acquisition 
phase; the model is coded only when it is complete and consistent. 

PMB may work within a robust acquisition environment. In such 
an environment, program fragments may come from many other 
knowledge sources, such as those expert in traces and examples, 
natural language, and specific programming domains. However, 
the operation of PMB is not predicated on the existence of other 
modules: all fragments to PMB could be produced by a 
straightforward deterministic parser for a surface language such as 
the one used to express fragments. 

7. Conclusion 

PMB has been used both as a module of the PSI program 
synthesis system E31 and independently. Models built as part of 
PSI have been acquired via natural language dialogs and 
execution traces and have been automatically coded into LISP by 
other PSI modules. PMB has successfully built a number of 
moderately complex programs for symbolic computation. 

The most important topics for future work in this area include (1) 
extending and revising the knowledge base, (2) providing an 
efficient mechanism for testing alternate hypotheses and allowing 
program modification, and (3) providing a general mechanism for 
specifying where in the program model a program fragment is to 
go. The last problem has resulted in a proposed program reference 
language I1 3. 
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