
A BASIS FOR A THEORY OF PROGRAM SYNTHESIS’

P.A.Subrahmanyam
USC/Information Sciences Institute

and
Cepartment of Computer Science

University of Utah, Salt Lake City, Utah 84112

1. Introduction and Summary
In order to obtain a quantum jump in the quality and

reliability of software, it is imperative to have a coherent

theory of program synthesis which can serve as the basis for a

sophisticated (interactive) software development tool. We

argue that viewing the problem of (automatic) program

synthesis as that (automatically) synthesizing implementations

of abstract data types provides a viable basis for a general

theory of program syntheeis. We brlefly describe the salient

features of such a theory [5, Sj, and conclude by listing some

of the applications of the theory.

1.1. Roquiromonts for en Accrptable Theory of Program

Synthesis.

We view some of the essential requirements of en acceptable

theory of program synthesis to be the following:

- the theory should be general;

- it must adhere to Q coherent set of underlying
principles, and not be based on an ad hoa
collection of heuristics;

- it must be based on a sound mathematical
framework;

- it must account for the “state of the art” of
program synthesis; in particular, it must allow for
the generation of “efficient” programs.

Further, if a theory is to be useful, we desire that it possess

the following additional attributes:

- it should serve as the basis for a program
development system which can generate provably
correct non-trivial programs;

- it should possess adequate flexibility to admit
being tailored to specific application tasks1

- it should provide new and insightful perspectives
into the nature of programming and problem
solving,

1
This work warn rupportrd in prrt by l n IBM Followskip

With these requirements in mind, we now examino the nature

of the programming process in an attempt to characterize the

basic principles that underly the conttructlon of “good”

programs.

2 A basis for a Theory of Program Synthesis ---_
Intuitively, the abstraction of a problem can be viewed as

consisting of an appropriate set of functions to be performed

on an associated set of objects. Such a collection of objects and

functions is an “abstract data typo” and has the important

advantage of providing a representation independent

characterization of a problem. Although the illustrations that

most readily come to mind are commonly employed data

structures such as a stack, a file, a queue, a symbol table, etc.,

any partial recursive function can be presented as an abstract

data type.

Programming involves representing the abstractions of

objects and operations relevant to a given problem domain

using primitives that are presumed to be already available;

ultimately, such primitives are those that are provided by the

available hardware. Various programming methodologies

advocate ways of achieving “good” organizations of layers of

such representations, in attempting to provide an effective

means of coping with the complexity of programs. _

there exists, therefore, compelling evidence in favor of

viewing the process of program synthesis as one of obtaining

an implementation for the data type correponding to the

problem of interest (the “type of interest”) in terms of another

data type that corresponds to some representation (the “target

type.“) This perspective is’ further supported by the following

basic principles that we think should underly the synthesis

process (if reliable programs are to be produced consistently):

1. The programming process should essentially be
one of program synthesis proceeding from the
spocificrtions of a problem, rather than being
primarily analytic (e.g. constructing a program and
then verifying it) or empirical (e.g. constructtng a
program and then testing it).

74

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved.

2. The specification of a problem should be
representation independent. This serves to
guarantee complete freedom in the program
synthesis process, in that no particular program is
excluded a priori due to overspecification of the
problem caused by representation dependencies.

3. The synthesis should be guided primarily by the
semantics of the problem specification.

4. The level of reasoning used by the synthesis
paradigm should be appropriate to “human
reasoning,” rather than being machine oriented
(see [6]). In addition to making the paradigm
computationally more feasible, this has two major
advantages:

a. existing paradigms of programming such as
“stepwise refinement” can be viewed in a
mathematical framework

b. user interaction with the system becomes
more viable, since the level of reasoning is
now “visible” to the user.

The above principles led us to adopt an algebraic formulation

for the development of our theory [l, 21, [3, 43. An important

consequence of this decision was that the synthesis paradigm is

independent of any assumptions relating to the nature of the

underlying hardware. In fact, it can even point to target types

suited to particular problems of interest i.e. trrget machine

architectures which aid efficient implementations.

3. the Proposed Paradigm for Prowam Synthesis
We adopt the view that any object representing an instance

of a type is completely characterized by its “externally

observable behavior”. The notion of an implementation of one

data type (the type of interest) in terms of another (the target

type) is then defined as a map between the functions and

objects of the two types which preserves the observable

behavior of the type of interest. The objective, then, is to

develop methods to automate the synthesis of such

implementations based on the specifications of the type of

interest and the target type.

Intuitively, the crux of the proposed paradigm lies in

“mathematically” incorporating the principle of stepwise

refinement into automatic programming. This is done by

appropriately interpreting both the syntactic and semantic

structure inherent in a problem. An important distinction from

most transformation based systems is that the refinem@rnt is

guided by the semantics of the functions define on the type of

interest, rather than by a fixed set of rules (e.g. [7]>. An formal

characterization of some of the pivotal steps in the synthesis

process is provided, and an attempt is made to pin-point those

stages where there is leeway for making alternative choices

based upon externally imposed requirements. (An example of

such a requirement is the relative efficiency desired for the

implementations of different functions depending upon their

relative frequency of use.)

This separation of the constraints imposed by (a) the

structure inherent in the problem specification, (b) the

requirements demanded by the context of use, and (c) the
interface of these two, serves to further subdivide the

complexity of the synthesis task -- it becomes possible now to

seek to build modules which attempt to aid in each of these

tasks in a relatively independent manner.

In summary, our goal was to seek, in as far as is possible, a

mathematically sound and computationally feasible theory of

program synthesis. The formal mathematical framework

underlying our theory is algebraic. The programs synthesized

are primarily applicative in nature; they are provably correct,

and are obtained without the use of backtracking. There is

adequate leeway in the underlying formalism that allows for the

incorporation of different “environment dependent” criteria

relating to the “efficiency” of implementations. The objectives

of the theory include that conventional programs be admitted

as valid outcomes of the proposed theory, This is in consonance

with our belief that any truly viable theory of synthesis should

approximate as a limiting case already existing empirical data

relevant to its domain.

4. An Example: The Synthesis of Block Structured Symbol
Table Using an Indexed Array

To illustrate some aspects of the paradigm for program

synthesis we outline the synthesis of a block-structured

SymbolTable using an indexed array as a target type (cf. [4].)

The sorts of objects involved are instances of SymbolTable,
Identifier, Attributes, Boolean, etc.; our primary interest here is

on the manipulation of instances of SymbolTables. The

functions that are defined for manipulating a SymbolTable

include: NEWST (spawn a new instance of a symbol table for

the outermost scope,) ENTERBLOCK (enter a new local naming

scope,) ADDID (add an identifier and associated attributes to the

symbol table,) LEAVEBLOCK (discard the identifier entries from

the most current scope, re-establish the next outer scope,)

ISINBLOCK (test to see if an identifier has already been

declared in the current block,) and RETRIEVE (retrieve the

attributes associated with the most recent definition of an

Identifier.) The formal specifications may be found in [4] (see

also [6].) Although implementations for more complex definitions

of SymbolTables have been generated (which include tests for

“Global” Identifiers), we have chosen this definition because of

its familiarity,

The overall synthesis proceeds by first categorizing the

functions defined on the type of interest (here, the

SymbolTable) into one of the flowing three categories: 0) Base

75

Constructor functions that serve to spawn new instances of the

type (e.g. NEWST); (ii) Canstructor functions that serve to

generate new instances from existing ones (e.g. ADDID,

ENTERBLOCK, LEAVEBLOCKh and (iii) E&&or functions that

return instances of types other than SymbolTable (e.g.

RETRIEVE, ISINBLOCK).

The next step is to identify a subset of these functions

(termed kernel functions) which serve to generate all instances

of SymbolTables: these are NEWST, ADOID, and ENTERBLOCK.

A major step in obtaining an implementation for the TOI is to

provide an implementation for the kernel functions. Since no

model for the kernel functions is explicit in the specification of

a type, a suitable model must be inferred from the behavior of

the functions defined on the type. Such an inference follows
from an examination of the axioms defining the extraction

functions. Specifically, the domain of the terms of type

SymbolTable is partitioned into its) equivalence classes by the

extractors defined on the type -- and this is precisely what an

implementation is attempting to capture. The defining equations

of each function indicate how it “contributes” towards this
partitioning, and therefore how this “semantic structure”

imposed upon the terms of the SymbolTable is related to the

syntactic structure of the underlying terms,

Due to lack of space, we omit the details of how this is done.

One of the implemetations generated (automatically) is shown in

figure 1, wherein 0 denotes the “implementation map. We note

that an auxiliary data type which is almost isomorphic to a

Stack (of integers) was (automaticlly) defined in course of the

implementation; this Stack can, in turn, be synthesized in terms

of an indexed Array by a recursive invocation of the synthesis

procedures.

Other Implementations that are generated for the Symbol

Table include an implementation using a “Block Mark” to identify
the application Of the function ENTERBLOCK, and an

implementation similar to a “hash table” implementation is
suggested upon examining the semantics of the functions
defined on the Symbol Table.
--l----------cII--------------------~~~==~=-------~~~~~~~”~~--

We list below one of the implementations generated for a
SymbolTable, using an Array as the initially specified target
type. The final representation consists of the triple
<Array,lnteger,AOT1*1 the integer represents the current index
into the array, whereas AOTl (for &diary Eata lype-1) is
introduced in course of the synthesis process, and is isomorphic
to a Stack that records the index-values corresponding to each
ENTERBLOCK performed on a particular instance of a
SymbolTable.) We denote this by-writing t#s) - <a,i,edtl>.
informally, ENTERBLOCK.ADTl serves to “push” the current
index value onto the stack adtl, LEAVEBLOCK.ADTl serves to
“POP” the stack, and D.ADTl returns the -topmost element in the
Stack, returning a zero if the stack is empty.

WCC and PREO are the successor and menus functions on
Integers.

B(NEWST) E <NEWARRAY,ZERO,NEWAOTl’
B(AOOIO(s,id,al)) - <ASSIGN(a,SUCC(i),<id,al>),SUCC(i),adt 1’
g(ENTERBLOCK(s)) - <a,& ENTERBLOCK.AOTl(adtl,i)>
aLEAVEBLOCK(s)) - <a,D.AOTl(adt 1), LEAVEBLOCK.ADTl (adtl)>
BIISINBLOCK(s,id 1)) = ISINBLOCKTT(<a,i,adt l>,id 1)
bKRETRIEVE(s,idl)) - RETRIEVETT(<a,i,adt l>,ldl)

lSlNE3LOCKTT and RETRlEVETT are defined as follows:

ISINBLOCKTT(~a,i,adt 1~’ id 1) -
if i - ZERO
then FALSE
else if D.ADTl(adt 1) < i

then if proj(l, OATA = idl,
then TRUE
else ISINBLOCKTT(<a,PRED(i),adt l*,id 1)

else FALSE

RETRIEVETT(<a,i,adt l>,id 1) =
if i - ZERO
then UNDEFINED
else if proj(l,OATA)a,i)) - id1

then proj(2, OATA(a,i))
else RETRIEVETT(<a, PRED(i),adt I>, idl)

Here, proj(i,exl..xn”) - Xi.

Figure 1. A Symbol Table lmplemen!a!iOn

Othw Examples of Applications of the Synthesis Paradigm.

Several Programs have been synthesized by direct applications

of the synthesis algorithms developed so far. These include

implementations for a Stsck, a Queue, a Oeque, a Block
Strut tured SymbolTable, an interactive line-orlented
Text-Editor, o text formatter, a hidden surface elimination

algorithm for graphical dispteys, and an execution engine for a
data driven machine,

eferencso

[l] J.Goguen, J.Thatcher, E.Wagner, J.Wright. Initial Algebra
Semantics and Continuous Algebras. JACM 24:68-95, 1977.
(23 J.Goguen, J.Thatcher, E.Wagner. An Initial Algebra Approach
to the Specification, Correctness, and implementation of
Abstract Data Types, in Current Trends in Programming
Methodology, Vol IV, Ed. R.Yeh, Prentice-Hall, NJ, 1979, pages
80-149.
[33 J.Guttag, E.Horowitz, O.Musser. The Design of Data Type
Specifications, in Current Trends in Programming Methodology,
Vol IV, Ed. R.Yeh, Prentice-Hall, N.J., 1979.
[43 J.Guttag, E.Horowitz, O.Musser. Abstract Data Types and
Software Validation. CACM 21:1048-64, 1978.
[53 P.A.Subrahmanyam. Towards a Theory of Program Synthesis:
Automating Implementations of Abstract Data Types. PhO
thesis, Dept. of Comp. SC., State University of New York a!
Stony Brook, August, 1979.
16 J P.A.Subrahmanyam. A Basis for a Theory of Program
Synthesis. Technical Report, Dept. of Computer Science,
University of Utah, February, 1980.
[7 3 OBarstow. Knowledge-Based Program Construction, Elsevier
North-Holland Inc., NY., 1979.

76

