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1. Introduction and Summary 
In order to obtain a quantum jump in the quality and 

reliability of software, it is imperative to have a coherent 

theory of program synthesis which can serve as the basis for a 

sophisticated (interactive) software development tool. We 

argue that viewing the problem of (automatic) program 

synthesis as that (automatically) synthesizing implementations 

of abstract data types provides a viable basis for a general 

theory of program syntheeis. We brlefly describe the salient 

features of such a theory [5, Sj, and conclude by listing some 

of the applications of the theory. 

1.1. Roquiromonts for en Accrptable Theory of Program 

Synthesis. 

We view some of the essential requirements of en acceptable 

theory of program synthesis to be the following: 

- the theory should be general; 

- it must adhere to Q coherent set of underlying 
principles, and not be based on an ad hoa 
collection of heuristics; 

- it must be based on a sound mathematical 
framework; 

- it must account for the “state of the art” of 
program synthesis; in particular, it must allow for 
the generation of “efficient” programs. 

Further, if a theory is to be useful, we desire that it possess 

the following additional attributes: 

- it should serve as the basis for a program 
development system which can generate provably 
correct non-trivial programs; 

- it should possess adequate flexibility to admit 
being tailored to specific application tasks1 

- it should provide new and insightful perspectives 
into the nature of programming and problem 
solving, 

1 
This work warn rupportrd in prrt by l n IBM Followskip 

With these requirements in mind, we now examino the nature 

of the programming process in an attempt to characterize the 

basic principles that underly the conttructlon of “good” 

programs. 

2 A basis for a Theory of Program Synthesis ---_ 
Intuitively, the abstraction of a problem can be viewed as 

consisting of an appropriate set of functions to be performed 

on an associated set of objects. Such a collection of objects and 

functions is an “abstract data typo” and has the important 

advantage of providing a representation independent 

characterization of a problem. Although the illustrations that 

most readily come to mind are commonly employed data 

structures such as a stack, a file, a queue, a symbol table, etc., 

any partial recursive function can be presented as an abstract 

data type. 

Programming involves representing the abstractions of 

objects and operations relevant to a given problem domain 

using primitives that are presumed to be already available; 

ultimately, such primitives are those that are provided by the 

available hardware. Various programming methodologies 

advocate ways of achieving “good” organizations of layers of 

such representations, in attempting to provide an effective 

means of coping with the complexity of programs. _ 

there exists, therefore, compelling evidence in favor of 

viewing the process of program synthesis as one of obtaining 

an implementation for the data type correponding to the 

problem of interest (the “type of interest”) in terms of another 

data type that corresponds to some representation (the “target 

type.“) This perspective is’ further supported by the following 

basic principles that we think should underly the synthesis 

process (if reliable programs are to be produced consistently): 

1. The programming process should essentially be 
one of program synthesis proceeding from the 
spocificrtions of a problem, rather than being 
primarily analytic (e.g. constructing a program and 
then verifying it) or empirical (e.g. constructtng a 
program and then testing it). 

74 

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved. 



2. The specification of a problem should be 
representation independent. This serves to 
guarantee complete freedom in the program 
synthesis process, in that no particular program is 
excluded a priori due to overspecification of the 
problem caused by representation dependencies. 

3. The synthesis should be guided primarily by the 
semantics of the problem specification. 

4. The level of reasoning used by the synthesis 
paradigm should be appropriate to “human 
reasoning,” rather than being machine oriented 
(see [6]). In addition to making the paradigm 
computationally more feasible, this has two major 
advantages: 

a. existing paradigms of programming such as 
“stepwise refinement” can be viewed in a 
mathematical framework 

b. user interaction with the system becomes 
more viable, since the level of reasoning is 
now “visible” to the user. 

The above principles led us to adopt an algebraic formulation 

for the development of our theory [l, 21, [3, 43. An important 

consequence of this decision was that the synthesis paradigm is 

independent of any assumptions relating to the nature of the 

underlying hardware. In fact, it can even point to target types 

suited to particular problems of interest i.e. trrget machine 

architectures which aid efficient implementations. 

3. the Proposed Paradigm for Prowam Synthesis 
We adopt the view that any object representing an instance 

of a type is completely characterized by its “externally 

observable behavior”. The notion of an implementation of one 

data type (the type of interest) in terms of another (the target 

type) is then defined as a map between the functions and 

objects of the two types which preserves the observable 

behavior of the type of interest. The objective, then, is to 

develop methods to automate the synthesis of such 

implementations based on the specifications of the type of 

interest and the target type. 

Intuitively, the crux of the proposed paradigm lies in 

“mathematically” incorporating the principle of stepwise 

refinement into automatic programming. This is done by 

appropriately interpreting both the syntactic and semantic 

structure inherent in a problem. An important distinction from 

most transformation based systems is that the refinem@rnt is 

guided by the semantics of the functions define on the type of 

interest, rather than by a fixed set of rules (e.g. [7]>. An formal 

characterization of some of the pivotal steps in the synthesis 

process is provided, and an attempt is made to pin-point those 

stages where there is leeway for making alternative choices 

based upon externally imposed requirements. (An example of 

such a requirement is the relative efficiency desired for the 

implementations of different functions depending upon their 

relative frequency of use.) 

This separation of the constraints imposed by (a) the 

structure inherent in the problem specification, (b) the 

requirements demanded by the context of use, and (c) the 
interface of these two, serves to further subdivide the 

complexity of the synthesis task -- it becomes possible now to 

seek to build modules which attempt to aid in each of these 

tasks in a relatively independent manner. 

In summary, our goal was to seek, in as far as is possible, a 

mathematically sound and computationally feasible theory of 

program synthesis. The formal mathematical framework 

underlying our theory is algebraic. The programs synthesized 

are primarily applicative in nature; they are provably correct, 

and are obtained without the use of backtracking. There is 

adequate leeway in the underlying formalism that allows for the 

incorporation of different “environment dependent” criteria 

relating to the “efficiency” of implementations. The objectives 

of the theory include that conventional programs be admitted 

as valid outcomes of the proposed theory, This is in consonance 

with our belief that any truly viable theory of synthesis should 

approximate as a limiting case already existing empirical data 

relevant to its domain. 

4. An Example: The Synthesis of Block Structured Symbol 
Table Using an Indexed Array 

To illustrate some aspects of the paradigm for program 

synthesis we outline the synthesis of a block-structured 

SymbolTable using an indexed array as a target type (cf. [4].) 

The sorts of objects involved are instances of SymbolTable, 
Identifier, Attributes, Boolean, etc.; our primary interest here is 

on the manipulation of instances of SymbolTables. The 

functions that are defined for manipulating a SymbolTable 

include: NEWST (spawn a new instance of a symbol table for 

the outermost scope,) ENTERBLOCK (enter a new local naming 

scope,) ADDID (add an identifier and associated attributes to the 

symbol table,) LEAVEBLOCK (discard the identifier entries from 

the most current scope, re-establish the next outer scope,) 

ISINBLOCK (test to see if an identifier has already been 

declared in the current block,) and RETRIEVE (retrieve the 

attributes associated with the most recent definition of an 

Identifier.) The formal specifications may be found in [4] (see 

also [6].) Although implementations for more complex definitions 

of SymbolTables have been generated (which include tests for 

“Global” Identifiers), we have chosen this definition because of 

its familiarity, 

The overall synthesis proceeds by first categorizing the 

functions defined on the type of interest (here, the 

SymbolTable) into one of the flowing three categories: 0) Base 
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Constructor functions that serve to spawn new instances of the 

type (e.g. NEWST); (ii) Canstructor functions that serve to 

generate new instances from existing ones (e.g. ADDID, 

ENTERBLOCK, LEAVEBLOCKh and (iii) E&&or functions that 

return instances of types other than SymbolTable (e.g. 

RETRIEVE, ISINBLOCK). 

The next step is to identify a subset of these functions 

(termed kernel functions) which serve to generate all instances 

of SymbolTables: these are NEWST, ADOID, and ENTERBLOCK. 

A major step in obtaining an implementation for the TOI is to 

provide an implementation for the kernel functions. Since no 

model for the kernel functions is explicit in the specification of 

a type, a suitable model must be inferred from the behavior of 

the functions defined on the type. Such an inference follows 
from an examination of the axioms defining the extraction 

functions. Specifically, the domain of the terms of type 

SymbolTable is partitioned into its) equivalence classes by the 

extractors defined on the type -- and this is precisely what an 

implementation is attempting to capture. The defining equations 

of each function indicate how it “contributes” towards this 
partitioning, and therefore how this “semantic structure” 

imposed upon the terms of the SymbolTable is related to the 

syntactic structure of the underlying terms, 

Due to lack of space, we omit the details of how this is done. 

One of the implemetations generated (automatically) is shown in 

figure 1, wherein 0 denotes the “implementation map. We note 

that an auxiliary data type which is almost isomorphic to a 

Stack (of integers) was (automaticlly) defined in course of the 

implementation; this Stack can, in turn, be synthesized in terms 

of an indexed Array by a recursive invocation of the synthesis 

procedures. 

Other Implementations that are generated for the Symbol 

Table include an implementation using a “Block Mark” to identify 
the application Of the function ENTERBLOCK, and an 

implementation similar to a “hash table” implementation is 
suggested upon examining the semantics of the functions 
defined on the Symbol Table. 
--l----------cII--------------------~~~==~=-------~~~~~~~”~~-- 

We list below one of the implementations generated for a 
SymbolTable, using an Array as the initially specified target 
type. The final representation consists of the triple 
<Array,lnteger,AOT1*1 the integer represents the current index 
into the array, whereas AOTl (for &diary Eata lype-1) is 
introduced in course of the synthesis process, and is isomorphic 
to a Stack that records the index-values corresponding to each 
ENTERBLOCK performed on a particular instance of a 
SymbolTable.) We denote this by-writing t#s) - <a,i,edtl>. 
informally, ENTERBLOCK.ADTl serves to “push” the current 
index value onto the stack adtl, LEAVEBLOCK.ADTl serves to 
“POP” the stack, and D.ADTl returns the -topmost element in the 
Stack, returning a zero if the stack is empty. 

WCC and PREO are the successor and menus functions on 
Integers. 

B(NEWST) E <NEWARRAY,ZERO,NEWAOTl’ 
B(AOOIO(s,id,al)) - <ASSIGN(a,SUCC(i),<id,al>),SUCC(i),adt 1’ 
g(ENTERBLOCK(s)) - <a,& ENTERBLOCK.AOTl(adtl,i)> 
aLEAVEBLOCK(s)) - <a,D.AOTl(adt 1), LEAVEBLOCK.ADTl (adtl)> 
BIISINBLOCK(s,id 1)) = ISINBLOCKTT(<a,i,adt l>,id 1) 
bKRETRIEVE(s,idl)) - RETRIEVETT(<a,i,adt l>,ldl) 

lSlNE3LOCKTT and RETRlEVETT are defined as follows: 

ISINBLOCKTT(~a,i,adt 1~’ id 1) - 
if i - ZERO 
then FALSE 
else if D.ADTl(adt 1) < i 

then if proj(l, OATA = idl, 
then TRUE 
else ISINBLOCKTT(<a,PRED(i),adt l*,id 1) 

else FALSE 

RETRIEVETT(<a,i,adt l>,id 1) = 
if i - ZERO 
then UNDEFINED 
else if proj(l,OATA)a,i)) - id1 

then proj(2, OATA(a,i)) 
else RETRIEVETT(<a, PRED(i),adt I>, idl) 

Here, proj(i,exl..xn”) - Xi. 

Figure 1. A Symbol Table lmplemen!a!iOn 

Othw Examples of Applications of the Synthesis Paradigm. 

Several Programs have been synthesized by direct applications 

of the synthesis algorithms developed so far. These include 

implementations for a Stsck, a Queue, a Oeque, a Block 
Strut tured SymbolTable, an interactive line-orlented 
Text-Editor, o text formatter, a hidden surface elimination 

algorithm for graphical dispteys, and an execution engine for a 
data driven machine, 
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