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ABSTRACT 

To solve problems in the presence of large 
knowledge bases, it is important to be able to de- 
cide which knowledge is relevant to the problem at 
hand. This issue is discussed in [l 1. We pre- 
sent efficient algorithms for selecting a relevant 
subset of knowledge. These algorithms are presene 
ed in terms of resolution theorem proving in the 
first-order predicate calculus, but the concepts 
are sufficiently general to apply to other logics 
and other inference rules as well. These ideas 
should be particularly important when there are 
tens or hundreds of thousands of input clauses. 
We also present a complete theorem proving strate- 
gy which selects at each step the resolvents that 
appear most relevant. Thisstrategy is compatible 
with arbitrary conventional strategies such as P - 
deduction, locking resolution, et cetera. Also, 

1 

this strategy uses nontrivial semantic information 
and "associations" between facts in a 
to human problem-solving processes. 

I RELEVANCE FUNCTIONS 

Definition. A support set for a set S of 
clauses is a subset Ti of S such that S-Ti is con- 

way similar 

sistent. A support class for S is a set {Tl,..., 

Tk] of support sets for S. 

Definition. A (resolution) proof of C from S 
is a sequence C1,C2 ,...,C, of clauses in which Cn 

is C and each clause C i is either an element of S 

(an input clause) or a resolvent of two preceding 
clauses in S. (Possibly both parents of Ci are 

identical.) The length of such a refutation is n. 
A refutation from S is a proof of NIL (the empty 
clause) from S. 

Definition. A relevance function is a func- 
tion R which, given a set S of clauses, a support 
class T for S, and an integer n, maps onto a sub- 
set Rn(S, T) of S having the following property: 

If there is a length n refutation from S, 
then there is a refutation from Rn(S, T) of 
length n or less. 

Thus if we are searching for length n refutations 
from S, we need only search for length n refuta- 
* This research was partially supported by the Na- 
tional Science Foundation under grant MCS-79-04897. 

tions from R,(S, T). In fact, the derivation from 

R,(S, T) will be a subderivation of the derivation 

from S, for all relevance functions considered 
here. Thus if there is a length n P1-deduction 

from S, there will be a P l-deduction of length n 

or less from R,(S, T), and similarly for other corn 

plete strategies. 

Definition. Suppose S is a set of clauses. 
The connection graph of S, denoted G(S), is the 
graph whose nodes are the clauses of S, and which 
has a directed arc from C to C 

1 
2 labeled (Ll, L2)' 

if there are literals L 1 c C 1 and L2 E C2 such 

that Ll and z2 are unifiable. Such graphs have 

been introduced and discussed in [2]. Note that 
there will also be an arc labeled (L 

2' 
Ll> from C 

2 
to Cl in the above case. 

Definition. A path from Cl to Cn in G(S) is 

a sequence Cl,C2,..., Cn of clauses of S such that 

there is an arc from C i to c i+l in G(S), for lli<n. 

Also, the length of the path is n. 

Definition. The distance d(Cl, C2) between 

Cl and C2 in G(S) is the length of the shortest 

path from Cl to C2 in G(S), and m if no such path 

exists. 

Definition. If S is a set of clauses, T is a 
support class for S, and n is a nonnegative inte- 
ger, then Q,(S, T) is EC E S: d(C, Ti)(n in G(S) 

for all Ti in T}, where d(C, Ti) is min{d(C, D):D 

E Ti}. 

Intuitively, if d(Cl, C2) is small, Cl and C 
2 

are "closely related." Also, Q,(S, T) is the 

clauses that are closely related to all the sup- 
port sets. Typically we will know that several 
clauses are essential to prove a theorem, and each 
such clause by itself can be made into a support 
set. 

Definition. A set S of clauses is fully 
matched if for all C 
there exists C2cS an a 

ES for all literals L 
LicC2 such that Ll an 

EC 

a 2 
L1 

are unifiable. 
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Definition. R (S, T) is the largest fully 
matched subset of Q"(S, T). Thus we obtain R (S, 
T) from Qn(z, T) bynrepeatedly deleting Claus& 
containing unmatched" literals. This definition 
is not ambiguous, since if Q (S, T) contains more 
than one nonempty fully mate ed subset, then Rn(S, R 
T) is the union of all such subsets. 

Theorem 1. The function R is a relevance 
function. That is, if there is a length n refuta- 
tion from S, and T is support class, then there is 
a refutation from R (S, T) of length n or less. 
In fact, there is s&h a refutation from R 

Pl 
6, T) 

Proof. Assume without loss of generalgty 
that NIL appears only once in the refutation 
and that every clause in the refutation contributes 
to the derivation of NIL. Let S1 be the set of 
input clauses appearing in the refutation. Then 
S1 is connected, intersects all the support sets, 
and has at most n elements. 
binary trees we can show that 

Using properties ;f 

elements. Note that R (S T) 
Sl has at most r;;l 

Vance criterion. Thatnisl; 
is a "globaL" relg- 

it depends in a non- 
trivial way on all the input clauses and on inter- 
actions between all the support sets in T. 

II EXAMPLES 

Let S be the 

Pl 
P2 -- 
Pl P2 
E Ql 
p2 Q2 

P3 
Q7 

following 

Q6 
?% 44 Q5 

set of clauses: 

Q4 P4 
LB 44 
P3 P4 
EL 
Q7 P4 

Here ?i Ql indicates (??, Ql], i.e., E V Ql et 
cetera. Let Tlbe {{Pl], {P2]], let T2 be {{E]), 
and T = {Tl, T2). Then R (S, T) = R,(S, T) = R -- 
(S, T) = $j but R (S, T) =+Pl],{P2}" {Pl P2 P3? 
{p3,P4], {x}] which is in fact a miAimal'in:on-' 
sistent subset of S. 

For a second example, let S be the following: 

IN(a,box) 
IN(x,box) 1 IN(x,room) 
IN(x,room) > IN(x,house) 
E(x,house) 
ON(x,box) 1 m(x,box) 
ON(x,street) ' %?(x,house) 
IN(x,house) > IN(x,village) 
G(house,box) 
AT(house,street) 
ON(b,box) 
ON(c,street) 
m(d,village) 

Let Tl be {{IN(a,box))) and let T2 be ([IN(x, 
house)]]. Also, T = {Tl, T2]. 
R2(S, T) = R3(S, T) = 0 but R 

Then Rl(S, T) = 
(S, T) = {(IN(a, 

box)], (m&,box), IN(x,room) 4, {IN(x,room) IN(x, 
house)], {IN(x,house))]. This is a minimal'incon- 
sistent subset of S. Here "box", "room", "house", 
"a" et cetera are constants and x is a variable. 
Note that we cannot always guarantee that this re- 
levance criterion will yield minimal inconsistent 

. 
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sets as in these examples. 

is a set of clauses. Let Suppose S I I 4 1 be 
the length of S in characters when written in the 
usual way. Let Lits(S) be the sum over all clauses 

III ALGORITHMS 

C in S, of the number of literals in C. 

If S is a set of propositional clauses and 
IISII = m9 then G(S) may have O(m2) arcs. However, 
we can construct a modified version G,(S) of G(S) 
which has the same distances between klauses as 
G(S) does but which has only O(m) arcs. The idea 
is to reduce the number of arcs as follows: sup- 
pose C ,C. are the clauses containing L and D1, 
. . . . Dk%;e'tha clauses containing z. Then we add 
a node NL and arcs as follows in Gl(S): 

The numbers indicate the lengths of the arcs. Sim- 

larly, there are arcs of the form Di~-Nr,.f3C i2' 
Although Gl(S) is not a connection graph, and has 
arcs of length 0 and 1, it preserves distances be- 
tween clauses as in G(S). Using this modified con- 
nection graph, we have linear time algorithms to 
do the following, if S is a set of propositional 
clauses ,T=C T1 ,...,Tk] is a support class 
a suppo rt set, andn is a posi tive in teger: 

2. 
Construct G1(S) from S. 
Find {C c S. d(C, T;> 5 nl. 

, Ti is 

3. Given Q (S, T) for stpport class T, to 
find Rnn( S, T). 

Since step 2 must be performed 1 TI times to obtain 
Q (S, T), the total algorithm to obtain R (S, T) 
rzquires O(lT/*IIS/ I) time. (Here ) Tl isnthe num- 
ber of support sets.) 

The algorithm to find {C E S: d(C,T.) < r$is 
a simple modification of standard shortestipath al- 
gorithms. 
gorithms see [ 31. 

For a presentation of these standard al- 
This can be done in linear time 

because the edge lengths are all 0 and 1. 
pute R,(S, T) as follows: 

We com- 

Definition. If S is a set of clauses, let 
M(S) be the largest fully matched subset of S. 
Note that Rn(S, T) = M(Q,(S, T)). 

The following algorithm M1 computes M(S) for 
set S of propositional clauses in linear time. 
This algorithm can therefore be used to compute 
R,(S, T) if S is a set of propositional clauses. 
Note that t is a push-down stack. 



procedure Ml(S); 

tt- empty stack; 
for all L such that LEC or ~EC for some C&S do 

clauses(L) f {C~S:LEC]; 
- 

count(L) + I clauses(L)1 od; 
for all C&S do 

member(C)T TRUE: 
for all LEC do ' - 

if count (L) = 0 then - 
push C on t; member(C) + FALSE fi 

od 

while t not empty do - 
pop c off t; 
for all L&C- do 

count(L) ycount(L) - 1; 
if count(L) = 0 then - 

for all C 
I% 

E clauses(l) do 
if mem er(C,) then - - 

push C on t; 
member Cl) + FALSE fi t - 

od 
fi - - 

od 
*;- 
return((CeS: member(C) = TRUE]); 

end Ml; 

If S is a set of first-order clauses, then 
G(S) can be constructed in O(Lits(S)*I IS I I) time 
using a linear unification method [4]. This bound 
results because a unification must be attempted 
between all pairs of literals of S. The number of 
edges in G(S) is at most Lits(S)2. Given G(S), we 
can find {C E S: d(C, T.) < n] in time propor- 
tional to the number of &dges in G(S) (since all 
edge lengths are one). Also, given Q (S, T), we 
can find R (S, T) in time proportiona f to the num- 
ber of edggs in G(S) by a procedure similar to M 
above. The total time to find R (S, T) is there-l 
fore O<I T19cLits(S)2 + I IS) I*LitsTfS)). If 11 Sl I= m 
then the time to find R (S, T) is O(m2( TI). By 
considering only the przdicate symbols of literals, 
the propositional calculus algorithms can be used 
as linear time preprocessing step to eliminate 
some clauses from S. An interesting problem is to 
compute R (S, T) efficiently for many values of n 
at the sa#ie time. There are methods for doing 
this, but we do not discuss them here. 

IV REFINEMENTS 

A. Connected Components 

Proposition 1. If there is a length n refu- 
tation from S, and T is a support class for S, 
then there is a length n refutation from one of 
the connected components of R 

IF1 
(S, T). Also, the 

connected components can be found in linear time 
[ 31. 

B. Iteration 

Definition. If T = {T1,T2, . . ..Tk} is a sup- 

port class for S and Sl is a subset of S then Th Sl 
(T restricted to S1) is {Tl n S 
may be that T//R (S, 

,...,Tkn Sl]. It 
T) # T or t at distances in ii 

G(Rn(S, T)) arendifferent than distances in G(S). 
This motivates the following definitions. 

Definition. R;(S, T) = S, R;(S, T) = Rn(S,T), 

and if i>l then Ri(S, T) = Rn(Riql(S, T),TlRi-l(S, 
n 

T)). Also, Ry(S, T) is the limit of the sequence 

R;(S, T), R$, T), R;(S, T), *.. l 

Proposition 2. Rn i+l(S, T) GRi (S, T) for 

i>l. - Therefore the limit Ri(S, T) exists. Also, 

Rw(S, T) can be computed in at most I SI iterations 
oh@ *>. 
thannth&? 

Can it be computed more efficiently 

Theorem 2. If there is a length n refutation 
from S, and T is a support class for S, then there 
is a length n refutation from one of the connected 
components of R m (S, T). 

$1 
Proposition 3. For all i>O there exist n, 

S and T such that R:+'(S, T) = R: (S, T) # 

Rn i-l(S, T). Thus this computation can take arbi- 
trarily long to converge. 

Proof. Let n = 2, S = {P. 1 Pi+l: l<i<k] U 
CP 

i+l 
3 P. : l<i<k). 

-- 

T. = {Pi: P 
-- Let T = {+l,T2,T3} where 

J 
i+l: i s j(mod3)) U {Picl 1 P. : isj 

(mod 3)). Then R;(S, T) = @ if 2azk but iy(S, T) # 
6 if 2a < k. 

C. Selecting Support Clauses 

We now give another approach. 

Theorem 3. Suppose there is a length n refu- 
tation from S and T = IT ,...,T 1 is a support 
class for S. Then there'exist tlauses Ci E Ti, 
l<i<k, such that -- 

a) {Cl,C2,...,Ck] C R co (S, {CC,], CC,}, 
El 

. . . . {Ck}}) and 
L 

b) thzre is a length n refutation from 
R 
$1 

(S, CCC,}, . . . . k.,H). 

Thus it is possible to select particular clauses 
from the support sets and use them to define R. 

There may be many sets R co (S, {{Cl), 
I"1 

. . . , 

{C,}}) satisfying condition a) $bove, but they may 
be smaller than the connected components of R ~0 

Pl 
(S, T). It is possible to construct examples z av- 
ing this property. Therefore it may help to use 
the above sets rather than R co (S, T) when search- 

ing for refutations. 
rg 

Another advantage is that it 
is possible to examine the clauses C. E T. in some 
heuristically determined order. Fu&herm;re, the 
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above approach is useful when the support sets Ti 
are not known in advance but are obtained one 
clause at a time. 

We now give a recursive procedure "re13" for 
generating all the sets as in Thereom 3. The idea 
is to order the Ti so as to reduce the branching 
factor as much as possible near the beginning of 
the search. Thus we use the principle of "least 
commitment." This procedure has as input sets Sl 
and S of clauses, integer n, and support class T 

Ri(S, {(D1),..., {Dj}, {Cl}, . . . . {Ck})) having 

,...,Ck} as a subset, for Ci e Ti, 
ere is a length n refutation from S, 

and T is a support class for S, then there will be 
a length n refutation from some set output by 
rel3(lb, rtl, S, T). 

Definition. If S = {Dl, 
= {{D,) , . . . . {Dj% 

. . ..Dj) then Single(S) 

procedure rel3(S,,n,S,T) 

S2 -+ <(S, T 6 Single(S1)) 

if s1 C S2 then 

if T = fl then output (S2) else - 
T,+- TG 

I 

choose 'I$ e Tl minimizing I T21; 

for all C E T2 do 

od: 
re13(S1U {C),n,S2,Tl-T2) 

fi;-’ 
fi; 

end re13; 

By searching for such sets Sl, we can some- 
times obtain much better relevance criteria than by 
previous methods. The use of centers insures that 
elements of Sl will be closer together than in pre- 
vious methods. 

To implement this method, let S2 be Q 
p+2,@ 

T) . For each C E S2, let S3 be RrnT2 (S,{{b}}4).' 
-I 

1-p 
If S3 intersects all support sets, then it is a 
candidate set of input clauses for a length n refu- 
tation. Here S, is a set of possible centers. 
Note that two clauses of S will have distance at 
most rtl + 1 in G(S3). No?e also that if n=6 then 

IF1 = 2 and if n = 10 then r?l = 3. Thus we 

can get somewhat nontrivial refutations with quite 
small distance bounds. 

E. Typing Variables 

For these relevance criteria to be useful, 
there must exist clauses C and C of S such that 
dC+ C2) is large. Howe&r, if z he axiom x=y 1 
y=x is in S then two clauses of the form tl = t2 d 
D and t3 # t4 
Tib 

v D2 will have distance 3 or less. 
is may cause everything to be close to everything 

else. To reduce this problem, we propose that all 
variables be typed as integer, Boolean, list, 
string, et cetera and unifications only succeed if 
the types match. Thus the above clauses would not 
necessarily be within distance 3 if tl and t4 or t2 
and t3 have different types. The use of types may 
increase the number of clauses, since more than one 
copy of some clauses may be needed. However, 
the overall effect may still be beneficial. 

F. Logical Consequences 
D. Center Clauses 

By using the idea that graphs have "centers," 
we can reduce the distance needed to search for 
relevant clauses by another factor of 2. 

Theorem 4. Suppose there is a length n refu- 
tation from set S of clauses, and T is a support 
class for S. Then there exists a clause C E S and 
a set S 1 c S having the following properties: 

1. 

;: 

There is a length n refutation from S1 
Sl is fully matched 

4. 
Sl intersects all the support sets in T 
C E Sl and for all Cl E Sl, d(C, Cl) 2 

+1 in G(Sl). 

Proof. Let Sl be the input clauses actually 
used insome minimal refutation from S. Then I s1 I 

Choose a "center" C of Sl, and note that 

The preceding ideas can also be applied to 
derivations of clauses other than NIL from S. 

Definition. A support set for S relative to 
C is a subset V of S such that C is not a logical 
consequence of S-V. A support class for S relative 
to C is a collection of support sets for S relative 
to c. For example, if I is an interpretation of S 
in which C is false, and V is the set of clauses of 
S that are false in I, then V is a support set for 
S relative to C. 

Definition. M(S, C) is the largest subset of 
S in which all literals are matched, except possi- 
bly those having literals of C as instances. 

Definition. Rn(s,T,c) is M(Q,(s,T) 23. 

Theorem 5. If there is a length n derivation 
of something subsuming C from S, and T is a support 
class for S relative to C, then there is a length 
n derivation of something subsuming C from R (S, 
T,O. $1 

As before, we can introduce R O" (S,T,C) and 

other relevance criteria. 
121 
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G. Procedures scribed earlier. 

To incorporate procedural and heuristic in- 
formation, we may add clauses expressing the as- 
sertion A(x) 3 (sy)B(x,y) where A and B are input 
and output assertions for the procedure and x and 
y are input and output variables. To account for 
the fact that heuristics may fail, we assign pro- 
babilities of truth to clauses. The task then is 
to find a set S of clauses from which the desired 
consequence can'possibly be derived, subject to 
the condition that the product of the probabili- 
ties of the clauses in Sl is as large as possible. 
One way to do this is to run many trials, gene- 
rating relevant subsets of S, where the clauses 
of S are chosen to be present or absent with the 
appropriate probability. We then select a rele- 
vant set of clauses from among those clauses that 
have been found to be relevant in many of the 
trials. Note that if procedures are encoded as 
above, then a short proof may correspond to a so- 
lution using a few procedure calls, but each pro- 
cedure may require much time to execute. 

H. Subgoals 

If procedures are encoded as above, then each 
procedure may call the whole theorem prover recur- 
sively. This provides a possible subgoal mechan- 
ism. By storing the clauses from all subgoals in 
a common knowledge base, we may get interesting 
interactions between the subgoals. By noticing 
when subgoals are simpler than the original pro- 
blem in some well-founded ordering, we may be able 
to get mathematical induction in the system. The 
use of clauses, procedures, subgoals, and relevance 
criteria as indicated here provides a candidate 
for a general top-level control structure for an 
artificial intelligence system. 

V A COMPLETE STRATEGY 

The following procedure attempts to construct 
a refutation from set S of first-order clauses: 

procedure refute(s); 
for d = 1 step 1 until (NIL -- 

for j = 1 step 1 until (j 
refl(S, j, d) od od; -- 

is derived) do 
- > d) do - 

end refute; 

procedure refl(S, i, d); 
let T be a support class for S; 
RtR?(S, '0; 
if R 'is empty then return fi; 
~Ru llevel 1 resolvents from R); 
if NIL E V or d = 1 then return fi; 
for j = 1 step 1 until(NIL is delved) do - 

refl(V, j, d - 1) &; 
end refl; 

This procedure selects at each step the clauses 
that seem most relevant and attempts to construct 
a refutation from them. Similar procedures can be 
given using other of the relevance functions de- 

A. Generating Support Sets 

One way to generate support sets for the 
above procedure is to let each support set be the 
subset of S in which specified predicate symbols 
occur with specified signs. This would yield 2n 
support sets for n predicate symbols. Of course, 
it is not necessary to use all of these support 
sets. A more interesting possibility is to have a 
collection {I,, 12, . . . , 
Sandtolet T. 

Ikl of interpretations of 
be the set of clauses that are 

false in I.. 'If I, has a finite domain then T. 
can be comiuted by ehaustive testing. Otherwisk, 
special methods may be necessary to determine if a 
clause C is true in I.. If I. has an infinite 
domain, a possible he?iristic 3s to let T. be the 
set of clauses that are false on some fiiite sub- 
set of the domain. If f is an abstraction mapping 
or a weak abstraction mapping [5] and I is an 
interpretation, then{CeS: some clause in f(C) is 
false in 11 is a support set for S. This approach 
may allow the use of nontrivial support sets which 
are easy to compute, especially if all elements of 
f(C) are ground clauses for all C in S. Note that 
T may include support sets obtained both syntac- 
tically and semantically. Although it may require 
much work to test if C is true in I., this kind of 
effort is of the kind that humans s&em to do when 
searching for proofs. Also, this provides a 
meaningful way of incorporating nontrivial seman- 
tic information into the theorem prover. The arcs 
in the connection graph resemble "associations" 
between facts, providing another similarity with 
human problem solving methods. 
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