
ON PF0VING LAWS OF TBE ALGEBRA OF FP-SYSTE2% 
INEDINB~LCF 

Jacek Leszczykcwski 
Polish Acadeq of Sciences 

Institute of Computer Science 
P.O.BOX 22, 00-901 Warszawa PKiN, PQLMD 

I INTFODUCX'ION 

J.Backus, in CACM 21/8, defined a class of ap- 
plicative prograrrunin g systems called FP /functional 
prograrmcing/ systems in which a user has: l.objects 
built recursively frcxn atcms, UU /an undefined ele- 
ment/ and objects by a strict /i.e. a UU-preserving/ 
"list" operator, 2. elementary functions over obje- 
cts, 3. tools for building functions out of already 
defined functions. 

One can think of a machine support while work- 
ing with FP systems and proving facts about FP sys- 
tems as well as facts concerning the functions be- 
ing defined. The choice of EDINBURGH KF is rather 
natural because it is an interactive ccmputer sys- 
tem /implemented in LISP/ for reasoning about fun- 
ctions /see &I/. It consists of two parts. The 
first part is a family of calculi each of which is 
characterized by four factors: 1. type operators 
/representing domains in the sense of Scott's theo- 
ry; see m/, 2. constants /representing continuo- 
us functions/, 3. axicms, 4. inference rules. One 
of them, PPLAMBDA, is given as the "initial" calcu- 
lus, and other calculi may be built by users as e.x- 
tensions of existing calculi. The second part is a 
high level prograrmxin g language ML which is fully 
higher order and is strongly typed. Its polymorphic 
types make it as convenient as typeless languages. 

This paper is a short report on the application 
of EDINBUZH LCF to proving the laws of the algebra 
of FP systems listed by Backus in [ll. Actualiy, 
we generalized FP-systems and the laws are formula- 
ted in stronger fonn than it was done by Backus. We 
briefly describe /sec.II/ the style of proving with 
the system, then /sec.III/ ccxtnnent the strtegies u- 
sed in the proofs giving only their specifications. 
The summing up remarks will be given in sec.IV. r@- 
re detailed report on the project is given in D>. 

II STYLEOFPROVING 

As mentioned there are inference rules associa- 
ted with each of the calculi of the system; the in- 
ferece rules of PPLAMBDA are primitive, and derived 
rules may be prcgramned by users. The inference ru- 
les are represented as ML-functions taking theorems 
/being a data type in ML/ as arguments and giving 
values which are theorems as well; an example is the 
computational induction rule INDUCT /it is the Scott 

induction rule; for more detailes see c21/. We could 
prove our theorems applying the inference rules in 
appropriate order but it is not a convenient style 
of proving. 

We base our proofs on partial subgoaling meth- 
ods, called tactics; these mean that given a formula 
to be proved-t to transform it into "simpler" 
formulae /which in turn have to be proved/ and the 
proof justifying the "transformation". The system 
can support this kind of proving via predefined ty- 
pes: goal, tactic and proof, defined as follatiJs: 

goal = form # siqset f form list 
proof = tlxn list -7 thm 
tactic = goal -> goal list# proof 

The first element of the Cartesian product defining 
the type goal is for stating the formula which is 
going to be proved, the third one for listing assum- 
ptions, the second one is /frcm the user's point of 
view/ an abstract type consisting of simplification 
rules; these are /possibly conditional/ equivalen- 
ces of terms to be used as left-to-right rewriting 
rules. 

We shall explain new the use of the subgoaling 
methods. Let us define when a theorem A> f' /A'- 
hypotheses, f'- conclusion/ achieves a goal f,ss,A. 
This is the case when, up to renaming of bound va- 
riables, f' is identical with f and each member 
of A' is either in A or is in the hypotheses of 
a member of the simplification set ss . Then, we 
say, a theorem list achieves a goal list if the 
first element of the theorem list achieves the first 
element of the goal list, etc. Thus, a tactic T 
will work "properly" if for any goal g and any 
goal list gl and any proof p such that 

T(g) = gl,p 
if we have a theorem list thml which achieves the 
goal list gl , then p(thml) will achieve the goal 
g - An important special case is when gl is empty 
for then we need only apply p to the empty theorem 
list - i.e. evaluate p(ni1) to obtain a theorem 
achieving our original goal g . 

We shall use two of the standard tactics. The 
first is SIMPTAC; applied to any goal (w,ss,A) , 
SIMPTAC produces a singleton list of goals 

E(w', ss ,Afl 
andproof p , where w' is the simplification of 
w by rewriting rules in ss and p justifies all 
the simplifications made. In the case where w' is 
a tautology the goal list is null. The second one 
is CONDCASESTAC ; for any goal (w,ss,wl) it 

84 

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved. 



finds a term t of the type tr /truth values do- 
main/ which is free in w and occurs as the con- 
ditional expression and then produces three subgo- 
als with formula w as the their first element and 
the simplification sets extended by the new assump- 
tions /caseswhen t equal UU, true and 
false respectively/. 

NW we introduce the last tool for desigining 
proofs: tacticals - mechaninsms for ccxnbining 
tactics to form larger ones. We shall use only one 
of the standard tacticals of the system called THEN 
For any tactic Tl and T2 the canposed tactic 
Tl THEN T2 applies Tl to the'goal and then applies 
T2 to all resulting subgoals produced by Tl ; the 
proof function returned is the ccmposition of the 
proof functions produced by Tl and T2 . 

III CQMMENTSONTHEPROOFS 

There are tree Foups of the proofs of the 
laws of the FP-system algebra listed by Backus in 
09. The first one is based on SIMPTAC ; for exam- 
ple, to prove II.1 of fl) we used the tactic: 
AFTAC THEN SIMPTAC where AFTAC is one of the pro 
gramned tactic and is specified as follms: 

AFTAC ("u =<v",ss,wi) = 
I"!X. u x = v x",ss,wl-J , p 

where: ! - universal quantification 
= < stands for equality or inequality 

of terms 
X- anewvariable 

The second group of proofs is based on COND- 
CASESTAC . The ccxrrposed tactic used in the proofs 
was: 

APTAC THEN CONDCASESTAC THEN SIMFTAC . 

For example in proofs of the laws: II.2 and 
11.3.1 presented in PI . 

The third group of proofs involves the use of 
the ccmputational induction rule INDUCT in an in- 
derectway. The proofs are based on the programmed 
tactic INDTAC which is an :'inverse" of the struc- 
tural induction rule over the type of lists which 
in turn is derived frcm the ccxnputational induction 
rule INDUCT. The specification of INDATC is 
the following: 

where: 
X- anew variable 
ss/ is ss extended by the asswtion 

w simplified by ss 
P uses the structural induction ru- 

le on lists derived form INDUCT 
nil and cons are the constants 

over lists. 

Let us presentoneof the proofs using INIYTAC 
Suppose we want to prove: 

"ToALL(G o F)= (ToALL G)o @CALL F) 11 

where : 
0 - the ccmposition of functions 
ToAILis takes two arguments:H-being 

a function and a list and produces 
a list of the results and the fol- 
lowing axicms are satisfied: 

"!H. TbALL H UU = UU II 
"!H. ToALL H nil = nil It 
"!H.!X.!L. ToALL H (cons X L)= 

cons(HX)(ToALLHL)i' . 

Frcxn the shape of subgoals produced by INDTAC 
we knm that we need to simplify the formulae by 
the above axicxns as well as the definition of the 
ccxnposition operator. Suppose we created the simp- 
lification set ss including the desired rewriting 
rules; new we can specify our goal in the following 
way: 

g = "ToALL (+G o F)= (Jl?oALL G)o (TbALL F)",ss,nil 

L&T = APTACTHENINDTACTHENSIMPTAC bea 
tactic we want to use to tackle our problem. If we 
apply our tactic T to our goal g we get a pair 
as result. Let us store the value on the variables 
P and gl ; we can do it in ML in the following 
way: 

gl,p := Tg 

It terns out that our tactic was fully successful 
and the system respond that gl is the empty list. 
Thus I see sec.11, we can apply p to the empty 
theorem list and the produced value is the theorem 
we wanted to prove. 

In general cases when we are not so clever, 
the subgoal list is not empty and we have to apply 
another tacit to solve the subgoals. 

Iv . FINAL- 

As we mentioned in sec.7: the aim of the paper 
was to present an application of EDINBURGH ID 
But the aim of any application itself is to find 
general tactics which can be used in totally diffe- 
rent examples. Why? Because EDINBURGH LCF is es- 
sentially a tool placed samewhere between a theorem 
prover and a proof checker; this is why we cannot 
rely on the built in strategies which is the case 
with the theorem provers but we are interested in 
looking for general purpose ones which when found 
canbeprogramnedin ML andanbeused to tackle 
other goals. The tactic used to prove the laws of 
the FP-system algebra are of a ganeral use and we- 
re inwolved in proving properties of the functions 
defined in FP-systems; see [9J. The generalization 

85 



of FP systems is briefly described in 12 arad 
presented in mr>re detailed version in v 9 . Exam- 
ples of more powerful and ccmplex tactics can be 
found in t8) . 

Let us canpare EDINBUXHLCF with other im- 
plemented systems. On one hand the explicite pre - 
sence of the logic of the systemmakes DXNBURGH 
LCF "hL11Tkzn-oriented" and easy to extend. On the 
other hand, for example, the Bayer-Moore theorem 
prover /see L3]/ is very efficient in its use 
of built in strategies, but difficult to extend ; 
by contrast the need to conduct all inferences 
through the basic inference rules /as ML-procedu- 
res/ , which appears necessary if we wish to allaw 
users to extend the system reliably by prqxxrming 
leads to sm inefficiency in LCF. This we have 
found tolerable and indeed it can be reduced sig - 
nificantly by direct implementation of ML /which 
at present is ccmpiled into LISP / . Another way 
of making the system quick is by running it on rrcul- 
tiprocessor machines which is done for example at 
Royal Technical University , Stockholm, Sweden . 
For a nice general ccmparison of these two system 
see [5J . 

The EDINBURGH ICF style of proving which con 
sists in solving the problems by means of program- 
med proof strategies seems to be natural. It took 
the athor 2 months to be able to work with the 
system. This style fits pretty well to doing large 
proofs with machine assistance. By this we mean 
neither that a large proof is submitted step by 
step and merely checked by the machine /see D] /, 
nor that the system discovers the large proof by 
itself, but that the problem may be split into sma- 
ler parts, each of which is tackled semiautcmatica- 
ly by a subgoaling method. A nice example of such 
application of EDINBURGH XF is the ccmpiler co- 
rrectness proof presented in E41 . 

I wish to thank Awa Cohn, Mike Cordon, Robin 
Milner and Chris Wadsworth for their friendly help 
duringmy stay inFdinburgh andespecially Robin 
Milner for his support while preparing the draft 
version of the paper. 

REFERENCES 

BackusJ. lrCan programming be liberated frcxn 
the von Neumann style? A functional prcgram- 
ming style and its algebra of programs", 
C&-m ACM 21,8 , 1978 . 
Bird R., "Programs and Machines; an introduc- 
tion to the theory of camputation", Wiley 1976 
Boyer R.S., mre J S., "A ccmputational Logic" 
Academic Press, New York 1979 . 

Texas, 1979 . 

Cohn A., "Remarks on Machine Proof", manusc:- 
ript, 1980 . 

Gordon M., Milner R., Wadsworth C., 'EDINBURGH 
Ia?" , Springer Verlag , 1979 . 

van Benthem Jutting L.S., "Checking Landau's 
'Grundlagen'in the AUTCMATH system', Tech. 
Hoghschule, Eidhoven, The Netherlands, 1977 . 

IeszczyXmski J., ~~AI-I experiment with 
EDINBURGH LCF" , Proc. CAUE-5. , Les Arsc, 
France , 1980 . 

Leszczylmski J., "Theory of FP systems in 
EDINBUIGH LCF", Internal Report, Ccanp. Sci. 
Dept., Edinburgh University, Edinburgh, Scot- 
land, 1980 . 

Milner R., "LCF: a way of doing proofs with 
a machine", Proc. MFCS-8 Symposium, OlcEnouc, 
Chechoslcrwakia, 1979 . 

Milner R., "Implementation and application of 
Scott's logic for ccxnputable functions", Proc. 
ACM Conference on Proving Assertions abouT 
Programs, SIGPLAN Notices , 1972 . 

Leszczy3xwski J., "EDINBUZH IXF supporting 
FTI? systems", Proc. Annual Conference of the 
Geselschaft fur Informatik, Universitat des 
Saarlandes, 1980 . 

[41 Cohn A., "High level proof in LCF", Proc. 4th 
Workshop on Autcmated Deduction , Austin , 

86 


