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ABSTRACT 

This is a summary of the methods and results 
of a longer paper of the same name which will appear 
elsewhere. 

The main result is that an automatic theorem 
proving system consisting of resolution, paramodul- 
ation, factoring, equality reversal, simplification 
and subsumption removal is complete in first-order 
logic with equality. When restricted to sets of 
equality units, the resulting system is very much 
like the Knuth-Bendix procedure. The completeness 
of resolution and paramodulation without the func- 
tionally reflexive axioms is a corollary. The 
methods used are based upon the familiar ideas of 
reduction and semantic trees, and should be help- 
ful in showing that other theorem proving systems 
with equality are complete. 

I INTRODUCTION 

A. Paramodulation 

Attempts to incorporate equality into automa- 
tic theorem provers began about 1969 when Robinson 
and Wos [6] introduced paramodulation and proved 
that if the functionally reflexive axioms were 
added to the set of clauses, then resolution and 
paramodulation constituted a complete set of in- 
ference rules. In 1975 Brand [l] showed that re- 
solution and paramodulation are complete even with 
out the functionally reflexive axioms,, Unfortunat 
ly, the usefulness of these results is limited 
because unrestricted paramodulation is a weak in- 
ference rule which rapidly produces mountains of 
irrelevant clauses. 

B. The Knuth-Bendix Procedure 

e- 

In 1970 Knuth and Bendix [2], working indepen- 
dently of Robinson and Wos, created a very effec- 
tive procedure for deriving useful consequences 
from equality units. Their process used paramodula- 
tion, but since it also used simplification and 
subsumption removal, most of the derived equalities 
were discarded and the search space remained small. 
The main defects of this procedure are that each 
equality must be construed as a reduction, so the 

commutative law is excluded, and the process works 
only on equality units, so most mathematical theo- 
ries, including field theory, are excluded. 

C. The Goal -- 

Since resolution and paramodulation constitute 
a complete set of inference rules, their use will 
provide a proof of any valid theorem if given suf- 
ficient (usually very large) time and space. On 
the other hand, the Knuth-Bendix process is effec- 
tive (usually small time and space) on a small 
class of theorems. We need to combine these two 
approaches and produce, if possible, an effective, 
complete prover. 

Some progress toward this goal has been re- 
ported. For example, the commutative law can be 
incorporated into the Knuth-Bendix procedure by 
using associative-commutative unification [4,5]. 
Also, restricted completeness results (i.e. the set 
of clauses must have a certain form) have been ob- 
tained for systems which appear to be more effec- 
tive than resolution and paramodulation [3]. 

D. Contributions of this Paper -- 

An impediment to progress toward the goal has 
been the lack of an easily used technique for ob- 
taining completeness results. We show here how the 
use of semantic trees can be generalized to provide 
completeness proofs for systems involving equality. 
We use this technique to obtain unrestricted com- 
pleteness results for a system which is thought to 
be fairly effective. The verification of effective- 
ness will require experiments which have not yet 
been performed. 

A. Semantic Trees 

II METHODS AND RESULTS 

One approach to obtaining completeness theorems 
is the use of semantic trees. To obtain a semantic 
tree T(S) for a set S of clauses, we first order 
the atoms of the Herbrand base I3, 
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say 13 = 1~1,~~'". 1. Then we build the binary tree 
T by giving each node at level k-l two sons labelled 
Bk and sBk, respectively. There will then be a one- 

to-one correspondence between the branches of T and 
the Herbrand interpretations. 

If the set S is unsatisfiable, then it will be 
falsified by every branch of T and as we move down 
a branch b of T we will come to a node n b at which 

it first becomes clear that b does not satisfy S. 
The node nb is called a failure node of T. The -- 
portion of T(S) from the root and extending up to 
and including the failure nodes is called the 
closed semantic tree for S, 'c(s). An inference node 
ofs a node whose children are both failure nodes. 

Every failure node nb has an associated clause 

Cb in S which caused the failure. That is, there is 

a ground instance CbO of C b such that if L is a 

literal of CbB, then QL occurs on b at or above nb 

with one such QL occurring at nbO 

It can be shown that the two clauses associated 
with the children of an inference node will resolve 
to produce a new clause C which causes failure at 
or above the inference node and therefore r(S U C) 
is smaller than -r(s). By performing a sequence of 
such resolutions we can eventually get the closed 
semantic tree to shrink to a single node and this 
will imply that the empty clause has been inferred. 

B. Incorporating Equality 

Problems arise when we attempt to use this pro- 
cess to obtain completeness results for systems in- 
volving equality. If S is E-unsatisfiable, then S 
is falsified by every E-interpretation but not nec- 
essarily by every interpretation. Thus it will only 
be on branches which are E-interpretations that 
failure nodes will exist in the usual sense. The 
other branches must be handled in some other manner. 

1. Altering Interpretations 

The approach we use is to alter an arbi- 
trary interpretation I in a way such that the re- 
sulting interpretation I* is an E-interpretation. 
If I is itself an E-interpretation, then no altera- 
tion is needed, I* = I. 

The alternation is made as follows. First 
order 8 in a way such that each equality atom occurs 
before any atom which contains either side of the 
equality as a subterm. (Other restrictions are also 
needed on this order.) For an arbitrary interpre- 
tation I, define a partial order +(I) on 8 such that 
A-+B means essentially that B has been obtained from 
A by replacing a subterm s of A by a term t and 
I(s=t) = T. Now define I*(A) as I(A) if A is irre- 
ducible anfd as I*(B) if A-tB. 

2. Substitutions 

For ground substitutions 0, 0' (0 = 
l$l+-tl,...,vk+tk)), we write 843' if 8' is identical 

to 8 except that one term t. of 8 has been replaced 
J 

by t! and t.+t!. 
J J J 

We say that 8 is irreducible if 

every term ti of 8 is irreducible. Suppose CBl and 

(Xl2 are ground instances of a clause C. If 81+e2 

then I*(cel) = I*(Cf3,). 

3. Failure Nodes 

Let Ib be the interpretation associated 

with a branch b of T(S). Then 1;; will be an E-in- 

terpretation and will, therefore, be falsified by 
some clause in S. That is, there will be a ground 
instance CB of a clause C in S such that I;l(Ce) 

is false and 8 is irreducible (Ib). (If 8 were re- 

ducible we could, by the previous paragraph, reduce 
it to an irreducible 8' such that I;(Cel) = F.) 

Every literal L of C8 will be falsified by 1; and 

there will exist a failure node nb such that %L 

occurs on b at or above n b with one such SL occur- 

ring at n b' These failure nodes can be split into 

two categories as follows. An R failure node, nb, -- 
is one such that the associated clause C is irre- 
ducible (Ib) (thus Ib(C) = F) and a P failure node --- 
is any failure node which is not an R failure node. 

4. Inference Nodes 

The two categories of failure nodes lead 
to two categories of inference nodes. A resolution 
inference node is a node with two R failure node 
children ams essentially the same thing as an 
inference node in a semantic tree for a set without 
equality. A paramodulation inference node is a P 
failure node nb such that every equalityode ances- 

tor of nb has a brother which is an R failure node. 

5. Summary of the Completeness Proof 

It is easy to show that if S has no E- 
model, then r(s), the closed semantic tree for S, 
has either a resolution or paramodulation inference 
node. If 'c(s) has a resolution inference node, 
then there will be a resolvent C of two clauses of 
S such that T(S U C) is smaller than T(S). 

If -c(s) has a paramodulation inference 
node n b' then there is a clause C28 such that 

I;(C,e) = F and C2B isreducible (Ib), say C28+E. 

Now C28 reduces to E using some equality s=t such 

that I,(s=t) = T. Since s=t occurs in the ordering 

88 



REFERENCES of 8 before the atom in C28 to which it applies, a 

node labelled s=t occurs on b above n b' This node 

has a brother which is an R failure node and hence 
there is a clause Cl0 such that s=t is a literal of 

Cl0 and if L is any other literal of Cl@, then 

Ib(L) = F. It follows that Cl6 and C28 have a para- 

modulant C'. This ground paramodulation can be 
lifted to the general level since 8 is irreducible 
and therefore s must start somewhere in C2. (The 

lifting lemma for paramodulation holds only in this 
case.) Thus there is a clause C which is obtained 
by paramodulating Cl into C2 and which has a ground 

instance C1 which is more reduced than C28. This 

greater reduction can be the basis for an ordering 
of the closed semantic trees involved and in the 
sense of this order, the tree for S U C will be 
smaller than the tree for S. 

C. Deletion of Unnecessary Clauses - 

1. Subsumption 

clauses 

2. 

Completeness is not lost if subsumed 
are deleted from S as the proof proceeds. 

Simplification 

If Cl = (s=t), C2 contains an instance so 

of s as a subterm, and s0e > toe for all ground 
stitutions 8, then the clause C = C,[to] is a 

sub- 

simplification of C2 using Cl. 

If a clause C has been simplified, then C 
may be deleted. (Our proof of this fails when the 
atom simplified is an equality of a certain form, 
but there are other reasons for believing it is 
still valid in this case.) 

D. The Final Result --- 

A complete system for first-order logic with 
equality may consist of resolution, paramodulation, 
factoring, equality reversal, simplification, and 
subsumption removal with the following restrictions. 

1. Simplification and subsumption removal are 
given priority since they do not increase the size 
of s. 

2. No paramodulation into variables. 

3. All paramodulat ions replace s by t where 
for at least one ground substitution 8, se > te. 
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4. If s > t then no reversal of the equality 
(s=t) will be necessary, and if Cl is obtained from 
C by reversing (t=s) then C may be deleted. 


