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ABSTRACT 
Semantic attachment is provided by FOL as a 

means for associating model values (i.e. LISP code) 
to symbols of a first order language. This paper 
presents an algorithm that automatically generates 
semantic attachments in FOL and discusses the ad- 
vantages deriving from its use. 

I INTRODUCTION 

In FOL (the mechanized reasoning system 
developed by R. Weyhrauch at the Stanford A.I. 
Laboratory [4,5,6 1, the knowledge about a given 
domain of discourse is represented in the form of 
an L/S structure. F 

An L/S structure is the FOL counterpart of the 
logician notion of a theory/model pair. It is a 
triple <L,S,F> where L is a sorted first order 
language with equality, S is a simulation structure 
(i.e. a computable part of a model for a first 
order theory), and F is a finite set of facts (i.e. 
axioms and theorems). 

Semantic attachment is one of the characteriz- 
ing features of FOL. It allows for the construction 
of a simulation structure S by attaching a "model 
value" (i.e. a LISP data structure) to (some of) the 
constant, function and predicate symbols of a first 
order language. Note that the intended semantics 
of a given theory can be specified only partially, 
i.e. not necessarily all the symbols of the 
language need to be given an attachment. 

The FOL evaluator, when evaluating a term (or 
wff), uses both the semantic and the syntactic 
information provided within an L/S structure. It 
uses the semantic attachments by directly invoking 
the LISP evaluator for computing the value of 
ground sub-terms of the term (wff). It uses a 
simplification set, i.e. a user-defined set of 
rewrite rules to do symbolic evaluations on the term 
(wff). Semantic information and syntactic informa- 
tion are repeatedly used - in this order - until no 
further simplification is possible. 
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Semantic attachment has been vital in the 
generation of many FOL proofs, by significantly 
increasing the efficiency of evaluations. The idea 
of speeding up a theorem prover by directly 
invoking the evaluator of the underlying system to 
compute some functions (predicates) has been used 
in other proof generating systems. FOL is different 
from other systems in that it provides the user with 
the capability of explicitly telling FOL which 
semantic information he wants to state and use about 
a given theory. This approach has many advantages, 
mostly epistemological, that are too long to be 
discussed here. 

II AUTOMATIC GENERATION OF SEMANTIC ATTACHMENTS 

It is common experience among the FOL users 
that they tend to build L/S structures providing 
much more syntactic information (by specifying 
axioms and deriving theorems) than semantic inform- 
tion (by attaching LISP code to symbols). In recent 
applications of FOL, L/S structures are big, and 
(since the information is essentially syntactic)the 
dimension of the simplification sets is rather 
large. The unpleasant consequence is that the 
evaluations tend to be very slow, if feasible at 
all. 

This has prompted us to devise and implement 
an extension of the FOL system, namely, a compiling 
algorithm from FOL into LISP, which allows for a 
direct evaluation in LISP of functions and pre- 
dicates defined in First Order Logic. The compila- 
tion of systems of function (predicate) definitions 
from FOL into LISP allows FOL to transform syntac- 
tic information into semantic information. In other 
words, the compiling algorithm allows FOL to 
automatically build parts of a model for a theory, 
starting from a syntactic description. 

Semantic attachment has often been criticised 
as error prone. In fact, the possibility of 
directly attaching LISP code to symbols of the 
language allows the FOL user to set up the se- 
mantic part of an L/S structure in a language 
different from that of first order logic. This 
forbids him to use FOL itself to check the relative 
consistency of the syntactic and semantic part 
of an L/S structure. 
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The automatic transformation of FOL axioms (or, 
in general, facts) into semantic attachments, 
besides the above mentioned advantage of substanti- 
ally increasing the efficiency of the evaluator, has 
the advantage of guaranteeing the consistency 
between the syntactic and semantic specifications 
of an FOL domain of discourse, or at least, to 
keep to a minimum the user's freedom of introduc- 
ing non-detectable inconsistencies. 

The semantic attachment for a function (predi- 
cate)symbol can be automatically generated through 
a compilation if such a symbol appears in the 
syntactic part of an L/S structure as a definiendum 
in a system of (possibly mutually recursive) 
definitions of the following form: 
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Here the f-s are function symbols and the P-s are 
predicate symbols. The mare terms in4-s, Y-s, 
F-s and x-s; the t-s are wffs in the$-s, q-s, ‘E-s 
and y-s. By ? we denote a tuple of constant sym- 
bols. By 9 (resp.2) we denote a tuple of function 
(resp. predicate) symbols. @(resp.2) may contain 
some of f (resp. P), but it is not necessarily 
limited to them, i.e. other function and predicate 
symbols besides the definienda can appear in each 
definiens. 

The compilation algorithm, when provided with 
a system of definitions, 'first performs a well- 
formedness check, then a compilability check. 

The well-formedness check tests whether or not 
all the facts to be compiled are definitions, i.e. 
if they have one of the two following forms (note 
that here we use the word "definition" in a broader 
sense than logicians do): 

fjxl...xr.fi(xl,...,xr) = . . . 

if 
Yl l **Ys.(Pj(yl'...,ys)= . . . 

The compilability check- consists in verifying that 
a> each definition is a closed wff, i.e. no free 
variable occurs in it; b) all the individual 
constants and the function (predicate) symbols 
appearing in the definiens either are one of the 
definienda or are attached to a model value (the 
first case allows for recursion or mutual re- 
cursion); c) the definiens can contain logical 
constants, conditionals and logical connectives 
but no quantifiers. 

When the FOL evaluator invokes the LISP 
evaluator, it expects a model value to be returned; 
it does not know how to handle errors occurring at 
the LISP level. This, for various reasons too long 
to be reported here, justifies the three above 
restrictions. Actually, the second and the third 
restrictions can be weakened with and appropriate 
extension of the FOL evaluator and of the compiler 
(respectively) to cope with the new situation. 
More details are presented in [l]. 

To present a simple example of compilation, 
consider the following facts: 

yy x.f(x,y) = if P(x) then g(x,x) else f(y,x) - 

vy x.g(x,y) = x+y 

If we tell FOL to compile them in an L/S structure 
where a semantic attachment exists both for the 
symbol P and for the symbol + (let them be two LISP 
functions named C-P and PLUS, respectively), it 
produces the following LISP code: 

(DE c-f (X y> 
(COND ((C-P x) (C-g x x)) 

(T (C-f y xl>>> 

(DE C-g (x y) (PLUS x Y> ) 

and attaches it to the function symbols f and g, 
respectively. 

III SOUNDNESS OF THE COMPILATION 

The compiling algorithm is pretty straight- 
forward, hence, its correctness should not con- 
stitute a problem. Conversely, a legitimate 
question is the following: Is the compilation 
process sound? In other words: Who guarantees 
that running the FOL evaluator syntactically on a 
system of definitions gives the same result as 
running the LISP evaluator on their (compiled) 
semantic attachments? 

The answer is that the two evaluations are 
weakly equivalent, i.e. if both terminate, they 
produce the same result. This is because the FOL 
evaluator uses a leftmost outermost strategy of 
function invocation (which corresponds to call-by- 
name) while the mechanism used by the LISP evalua- 
tor is call-by-value. Hence, compiling a function 
can introduce some nonterminating computations that 
would not happen if the same function were eval- 
uated symbolically. 

This, however, does not constitute a serious 
problem and it will be overcome in the next version 
of FOL. In fact, it will be implemented in a 
purely applicative, call-by-need dialect of LISP 
(note that, call-by-need is strongly equivalent to 
call-by-name in purely applicative languages). 

IV CONCLUSION 

FOL is an experimental system and, as is often 
the case with such systems, it evolves through the 
experience of its designer and users. Particular 
attention is paid to extend FOL only with new 
features that either improve its proving power or 
allow for a more natural interaction between the 
user and the system (or both) in a uniform way. 
The addition of the compiling algorithm sketched in 
the previous sections is in this spirit. This 



extension of FOL has been very useful in recent 
applications (see, for instance [2]). 

Experience has shown that the largest part of 
the syntactic information in an L/S structure can 
be compiled. This suggests a further improvement 
to be done on FOL evaluations. The use of the 
compiling algorithm leads to L/S structures where 
(almost) all the function (predicate) symbols of 
the language have an attachment. Hence, the 
strategy of the FOL evaluator to use semantic 
information first (that was the most reasonable 
one when semantic attachments were very few and 
symbolic evaluations could be rather long) is in 
our opinion no longer the best one. In fact, 
sometimes, properties of functions (stated as 
axioms or theorems in the syntactic part of the L/S 
structure) can be used to avoid long computations 
before invoking the LISP evaluator to compute that 
function. 

Finally, a comment on related work. Recently 
(and independently), Boyer and Moore have added to 
their theorem prover the possibility of introducing 
meta-functions, proving them correct and using them 
to enhance the proving power of their system [3]. 
This is very much in the spirit of the use of META 
in FOL and of the compiling algorithm described 
here. 
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