
AUTOMATIC GENERATION OF SEMANTIC

ATTACHMENTS IN FOL

Luigia Aiello
Computer Science Department

Stanford University
Stanford, California 94305

ABSTRACT
Semantic attachment is provided by FOL as a

means for associating model values (i.e. LISP code)
to symbols of a first order language. This paper
presents an algorithm that automatically generates
semantic attachments in FOL and discusses the ad-
vantages deriving from its use.

I INTRODUCTION

In FOL (the mechanized reasoning system
developed by R. Weyhrauch at the Stanford A.I.
Laboratory [4,5,6 1, the knowledge about a given
domain of discourse is represented in the form of
an L/S structure. F

An L/S structure is the FOL counterpart of the
logician notion of a theory/model pair. It is a
triple <L,S,F> where L is a sorted first order
language with equality, S is a simulation structure
(i.e. a computable part of a model for a first
order theory), and F is a finite set of facts (i.e.
axioms and theorems).

Semantic attachment is one of the characteriz-
ing features of FOL. It allows for the construction
of a simulation structure S by attaching a "model
value" (i.e. a LISP data structure) to (some of) the
constant, function and predicate symbols of a first
order language. Note that the intended semantics
of a given theory can be specified only partially,
i.e. not necessarily all the symbols of the
language need to be given an attachment.

The FOL evaluator, when evaluating a term (or
wff), uses both the semantic and the syntactic
information provided within an L/S structure. It
uses the semantic attachments by directly invoking
the LISP evaluator for computing the value of
ground sub-terms of the term (wff). It uses a
simplification set, i.e. a user-defined set of
rewrite rules to do symbolic evaluations on the term
(wff). Semantic information and syntactic informa-
tion are repeatedly used - in this order - until no
further simplification is possible.

The research reported here has been carried out
while the author was visiting with the Computer
Science Department of Stanford University on leave
from IEI of CNR, Pisa, Italy. Author's permanent
address: IEI-CNR, via S. Maria 46, I-56100 Pisa,
Italy

Semantic attachment has been vital in the
generation of many FOL proofs, by significantly
increasing the efficiency of evaluations. The idea
of speeding up a theorem prover by directly
invoking the evaluator of the underlying system to
compute some functions (predicates) has been used
in other proof generating systems. FOL is different
from other systems in that it provides the user with
the capability of explicitly telling FOL which
semantic information he wants to state and use about
a given theory. This approach has many advantages,
mostly epistemological, that are too long to be
discussed here.

II AUTOMATIC GENERATION OF SEMANTIC ATTACHMENTS

It is common experience among the FOL users
that they tend to build L/S structures providing
much more syntactic information (by specifying
axioms and deriving theorems) than semantic inform-
tion (by attaching LISP code to symbols). In recent
applications of FOL, L/S structures are big, and
(since the information is essentially syntactic)the
dimension of the simplification sets is rather
large. The unpleasant consequence is that the
evaluations tend to be very slow, if feasible at
all.

This has prompted us to devise and implement
an extension of the FOL system, namely, a compiling
algorithm from FOL into LISP, which allows for a
direct evaluation in LISP of functions and pre-
dicates defined in First Order Logic. The compila-
tion of systems of function (predicate) definitions
from FOL into LISP allows FOL to transform syntac-
tic information into semantic information. In other
words, the compiling algorithm allows FOL to
automatically build parts of a model for a theory,
starting from a syntactic description.

Semantic attachment has often been criticised
as error prone. In fact, the possibility of
directly attaching LISP code to symbols of the
language allows the FOL user to set up the se-
mantic part of an L/S structure in a language
different from that of first order logic. This
forbids him to use FOL itself to check the relative
consistency of the syntactic and semantic part
of an L/S structure.

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved.

The automatic transformation of FOL axioms (or,
in general, facts) into semantic attachments,
besides the above mentioned advantage of substanti-
ally increasing the efficiency of the evaluator, has
the advantage of guaranteeing the consistency
between the syntactic and semantic specifications
of an FOL domain of discourse, or at least, to
keep to a minimum the user's freedom of introduc-
ing non-detectable inconsistencies.

The semantic attachment for a function (predi-
cate)symbol can be automatically generated through
a compilation if such a symbol appears in the
syntactic part of an L/S structure as a definiendum
in a system of (possibly mutually recursive)
definitions of the following form:

Yx
1
. ..x r.fixl,... Xr> =6i@i,Iyi,q⌧1 9. l . +I

V
Yl� l - Ys4Pj(Yl��. Y,) = Zj@jr~j,~j,Yl,...,Ysl)

Here the f-s are function symbols and the P-s are
predicate symbols. The mare terms in4-s, Y-s,
F-s and x-s; the t-s are wffs in the$-s, q-s, ‘E-s
and y-s. By ? we denote a tuple of constant sym-
bols. By 9 (resp.2) we denote a tuple of function
(resp. predicate) symbols. @(resp.2) may contain
some of f (resp. P), but it is not necessarily
limited to them, i.e. other function and predicate
symbols besides the definienda can appear in each
definiens.

The compilation algorithm, when provided with
a system of definitions, 'first performs a well-
formedness check, then a compilability check.

The well-formedness check tests whether or not
all the facts to be compiled are definitions, i.e.
if they have one of the two following forms (note
that here we use the word "definition" in a broader
sense than logicians do):

fjxl...xr.fi(xl,...,xr) = . . .

if
Yl l **Ys.(Pj(yl'...,ys)= . . .

The compilability check- consists in verifying that
a> each definition is a closed wff, i.e. no free
variable occurs in it; b) all the individual
constants and the function (predicate) symbols
appearing in the definiens either are one of the
definienda or are attached to a model value (the
first case allows for recursion or mutual re-
cursion); c) the definiens can contain logical
constants, conditionals and logical connectives
but no quantifiers.

When the FOL evaluator invokes the LISP
evaluator, it expects a model value to be returned;
it does not know how to handle errors occurring at
the LISP level. This, for various reasons too long
to be reported here, justifies the three above
restrictions. Actually, the second and the third
restrictions can be weakened with and appropriate
extension of the FOL evaluator and of the compiler
(respectively) to cope with the new situation.
More details are presented in [l].

To present a simple example of compilation,
consider the following facts:

yy x.f(x,y) = if P(x) then g(x,x) else f(y,x) -

vy x.g(x,y) = x+y

If we tell FOL to compile them in an L/S structure
where a semantic attachment exists both for the
symbol P and for the symbol + (let them be two LISP
functions named C-P and PLUS, respectively), it
produces the following LISP code:

(DE c-f (X y>
(COND ((C-P x) (C-g x x))

(T (C-f y xl>>>

(DE C-g (x y) (PLUS x Y>)

and attaches it to the function symbols f and g,
respectively.

III SOUNDNESS OF THE COMPILATION

The compiling algorithm is pretty straight-
forward, hence, its correctness should not con-
stitute a problem. Conversely, a legitimate
question is the following: Is the compilation
process sound? In other words: Who guarantees
that running the FOL evaluator syntactically on a
system of definitions gives the same result as
running the LISP evaluator on their (compiled)
semantic attachments?

The answer is that the two evaluations are
weakly equivalent, i.e. if both terminate, they
produce the same result. This is because the FOL
evaluator uses a leftmost outermost strategy of
function invocation (which corresponds to call-by-
name) while the mechanism used by the LISP evalua-
tor is call-by-value. Hence, compiling a function
can introduce some nonterminating computations that
would not happen if the same function were eval-
uated symbolically.

This, however, does not constitute a serious
problem and it will be overcome in the next version
of FOL. In fact, it will be implemented in a
purely applicative, call-by-need dialect of LISP
(note that, call-by-need is strongly equivalent to
call-by-name in purely applicative languages).

IV CONCLUSION

FOL is an experimental system and, as is often
the case with such systems, it evolves through the
experience of its designer and users. Particular
attention is paid to extend FOL only with new
features that either improve its proving power or
allow for a more natural interaction between the
user and the system (or both) in a uniform way.
The addition of the compiling algorithm sketched in
the previous sections is in this spirit. This

extension of FOL has been very useful in recent
applications (see, for instance [2]).

Experience has shown that the largest part of
the syntactic information in an L/S structure can
be compiled. This suggests a further improvement
to be done on FOL evaluations. The use of the
compiling algorithm leads to L/S structures where
(almost) all the function (predicate) symbols of
the language have an attachment. Hence, the
strategy of the FOL evaluator to use semantic
information first (that was the most reasonable
one when semantic attachments were very few and
symbolic evaluations could be rather long) is in
our opinion no longer the best one. In fact,
sometimes, properties of functions (stated as
axioms or theorems in the syntactic part of the L/S
structure) can be used to avoid long computations
before invoking the LISP evaluator to compute that
function.

Finally, a comment on related work. Recently
(and independently), Boyer and Moore have added to
their theorem prover the possibility of introducing
meta-functions, proving them correct and using them
to enhance the proving power of their system [3].
This is very much in the spirit of the use of META
in FOL and of the compiling algorithm described
here.

ACKNOWLEDGMENTS

The members of the Formal Reasoning Group of
the Stanford A.I. Lab are acknowledged for useful
discussions. Richard Weyhrauch deserves special
thanks for interesting and stimulating conversa-
tions about FOL.

The financial support of both the Italian
National Research Council and ARPA (through Grant
No. MDA903-80-C-0102) are acknowledged.

REFERENCES

[1] Aiello, L., "Evaluating Functions Defined in
First Order Logic." Proc of the Logic -* - -
Programming Workshop, Debrecen, Hungary, 1980.

[2] Aiello, L., and Weyhrauch, R. W., "Using Meta-
theoretic Reasoning to do Algebra." Proc. of --
the 5th Automated Deduction Conf., Les Arcs,
France, 1980.

[3] Boyer, R.S., and Moore, J.S., "Metafunctions:
Proving them correct and using them efficiently
as new proof procedures." C. S. Lab, SRI
International, Menlo Park, California, 1979.

[4] Weyhrauch, R.W., "FOL: A Proof Checker for
First-order Logic." Stanford A.I. Lab, Memo
AIM-235.1, 1977.

[5] Weyhrauch, R. W., "The Uses of Logic in
Artificial Intelligence." Lecture Notes of the
Summer School on the Foundations of Artificial
Intelligence and Computer Science (FAICS '78),
Pisa, Italy, 1978.

[6] Weyhrauch, R.W., "Prolegomena to a Mechanized
Theory of Formal Reasoning." Stanford A.I. Lab,
Memo AIM-315, 1979; Artificial Intelligence
Journal, to appear, 1980.

92

