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An overview of a logic program interpreter 
written in Lisp is presented. The interpreter is a 
Horn clause-based theorem prover augmented by Lisp 
functions attached to some predicate names. Its 
application to natural language processing is 
discussed. The theory of operation is explained, 
including the high level organization of the PROVE 
function and an efficient version of unification. 
The paper concludes with comments on the overall 
efficiency of the interpreter. 

An axiom is either an atomic formula, which 
can be referred to as a fact, or an expression of 
the form 

( <conclusion> < <premissl> .*. <premissN> ) 

where both the conclusion and the premisses are 
atomic formulas. The symbol "<" is intended to be 
a left-pointing arrow. 

An atomic formula is an arbitrary Lisp ___ - 
expression beginning with a Lisp atom. That atom 
is referred to as a relation or predicate name. 
Some of the other atoms in the expression may be 
designated as variables by a flag on their property 
lists. 

I INTRODUCTION 

III CALLING LOGIC PROGRAMS - -- 
HCPRVR, a Horn Clause theorem PRoVeR, is a 

Lisp program that -interprets a 
--- 
simple logical 

formalism as a programming language. It has been 
used for over a year now at the University of Texas 
at Austin to write natural language processing 
systems. Like Kowalski [II, we find that 
programming in logic is an efficient way to write 
programs that are easy to comprehend. Although we 
now have an interpreter/compiler for the logic 
programming language Prolog [2], we continue to use 
HCPRVR because it allows us to remain in a Lisp 
environment where there is greater flexibility and 
a more familiar notation. 

This paper outlines how HCPRVR works to 
provide logic programming in a Lisp environment. 
The syntax of logic programs is given, followed by 
a description of how such programs are invoked. 
Then attachment of Lisp functions to predicates is 
explained. Our approach to processing natural 
language in logic programs is outlined briefly. 
The operation of HCPRVR is presented by giving 
details of the PROVE and MATCH functions. The 
paper closes with some remarks on efficiency. 

II LOGIC PROGRAM SYNTAX ~___-- ___ 

A logic program is an ordered list of axioms. -- 

-e--e 
* This work was supported by NSF Grant MCS 74-2491 -8. 

There are two ways to call a logic program in 
HCPRVR. One way is to apply the EXPR function TRY 
to an atomic formula. The other way is to apply 
the FEXPR function ? to a list of one or more 
atomic formulas, i.e., by evaluating an expression 
of the form 

( ? <formulal> ..- <formulaN> > 

In either case the PROVE function is called to try 
to find values for the variables in the formulas 
that makes them into theorems implied by the 
axioms. If it finds a set of values, it displays 
the formulas to the interactive user and asks him 
whether another set of values should be sought. 
When told not to seek further, it terminates after 
assigning the formulas, with the variables replaced 
by their values, to the Lisp atom VAL. 

IV PREDICATE NAMES AS FUNCTIONS ~- 

Occasionally it is useful to let a predicate 
name be a Lisp function that gets called instead of 
letting HCPRVR prove the formula in the usual way. 
The predicate name NEQ*, for example, tests its two 
arguments for inequality by means of a Lisp 
function because it would be impractical to have 
axioms of the form (NEQ* X Y) for every pair of 
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constants X and Y such that X does not equal Y. 
Predicate names that are also functions are FEXPRs 
and expect that their arguments have been expanded 
into lists in which all bound variables have been 
replaced by their values. These predicate names 
must be marked as functions by having the Lisp 
property FN set to T, e.g., executing 
(PUT '<predicate name> 'FN T), so thi: HCPRVR will 
interpret them as functions. 

By letting syntactic categories be predicates 
with three arguments, we can make axioms that pull 
phrases off of a list of words until we get a 
sentence that consumes the whole list. In 
addition, arbitrary tests can be performed on the 
phrase representations to check whether they can be 
semantically combined. Usually the phrase 
representation in the conclusion part of an axiom 
tells how the component representations are 
combined, while the premisses tell how the phrase 
should be factored into the component phrases, what 
their' representations should be, and what 
restrictions they have. Thus, the axiom 

((S X (U ACTOR V . W) Z) < (NP X V Y) 
(VP Y (U . W) Z) 
(NUMBER v ~1) 
(NUMBER U N2) 
(EQ N1 N2)) 

says that an initial segment of word list X is a 
sentence if first there is a noun phrase ending 
where word list Y begins, followed by a verb phrase 
ending where word list Z begins, and both phrases 
agree in number (singular or plural). Furthermore, 
the noun phrase representation V is made the actor 
of the verb U in the verb phrase, and the rest of 
the verb phrase representation, W, is carried along 
in the representation for the sentence. 

After suitable axioms have been stored, the 
sentence THE CAT IS ON THE MAT can be parsed by 
typing 

(? (S (THE CAT IS ON THE MAT) x NIL) 

The result of this computation is the theorem 

(S (THE CAT IS ON THE MAT) 
(IS ACTOR (CAT DET THE) 

LOC (ON LOC (MAT DET THE))) 
NIL) 

VI THEORY OF OPERATION -- 

A. General Organization 

HCPRVR works essentially by the problem 
reduction principle. Each atomic formula can be 
thought of as a problem. Those that appear as 
facts in the list of axioms represent problems that 
have been solved, while those that appear as 
conclusions can be reduced to the list of problems 
represented by the premisses. Starting from the 
formula to be proved, HCPRVR reduces each problem 
to lists of subproblems and then reduces each of 
the subproblems in turn until they have all been 
reduced to the previously solved problems, the 
"facts" on the axiom list. The key functions in 
HCPRVR that do all this are PROVE and MATCH. 

B. The PROVE Function -~ 

PROVE is the function that controls the 
problem reduction process. It has one argument, a 
stack of subproblem structures. Each subproblem 
structure has the following format: 

( <list of subproblems>.<binding list> ) 

where the list of subproblems is a sublist of the 
premisses in some axiom and the CAR of the binding 
list is a list of variables occurring in the 
subproblems, paired with their assigned values. 
When PROVE is initially called by TRY, it begins 
with the stack 

( ( ( <formula> ) NIL ) ) 

The algorithm of PROVE works in depth-first 
fashion, solving subproblems in the same 
left-to-right order as they occur in the axioms and 
applying the axioms as problem reduction rules in 
the same order as they are listed. PROVE begins by 
examining the first subproblem structure on its 
stack. If the list of subproblems in that 
structure is empty, PROVE either returns the 
binding list, if there are no other structures on 
the stack, i.e., if the original problem has been 
solved, or removes the first structure from the 
stack and examines the stack again. If the list of 
subproblems of the first subproblem structure is 
__ empty, not PROVE examines the first subproblem on 
the list. If the predicate name in it is a 
function, the function is applied to the arguments. 
If the function returns NIL, PROVE fails; otherwise 
the subproblem is removed from the list and PROVE 
begins all over again with the modified structure. 
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When the predicate name of the first 
subproblem in the list in the first subproblem 
stucture is not a function, PROVE gets all the 
axioms that are stored under that predicate name 
and assigns them to the local variable Y. At this 
point PROVE goes into a loop in which it tries to 
apply each axiom in turn until one is found that 
leads to a solution to the original problem. It 
does this by calling the MATCH function to compare 
the conclusion of an axiom with the first 
subproblem. If the match fails, it tries the next 
axiom. If the match succeeds, the first subproblem 
is removed from the first subproblem structure, 
then a new subproblem structure is put on the stack 
in front of that structure. This new subproblem 
structure consists of the list of premisses from 
the axiom and the binding list that was created at 
the time MATCH was called. Then PROVE calls itself 
with this newly formed stack. If this call returns 
a binding list, it is returned as the value of 
PROVE. If the call returns NIL, everything is 
restored to what it was before the axiom was 
applied and PROVE tries to apply the next axiom. 

The way that PROVE applies an axiom might be 
better understood by considering the following 
illustration. Suppose that the stack looks like 
this: 

( ( (Cl C2).<blist> ) ..* ) 

The first subproblem in the first subproblem 
structure is Cl. Let the axiom to be applied be 

(C < Efl P2 P3) 

PROVE applies it by creating a new binding list 
blist', initially empty, and then matching C with 
Cl with the call (MATCH C <blist'> Cl <blist>). If 
this call is successful, the following stack is 
formed: 

( ( (Pl P2 P3).<blist'> ) ( (C2).<blist> ) e.. ) 

Thus problem Cl has been reduced to problems Pl, P2 
and P3 as modified by the binding list blist'. 
PROVE now applies PROVE to this stack in the hope 
that all the subproblems in it can be solved. 

In the event that the axiom to be applied is 
cc>, that is, the axiom is just a fact, the new 
stack that is formed is 

( ( ().<blist'> ) ( (C2).<blist> ) . . . ) 

When PROVE is called with this stack, it removes 
the first subproblem stucture and begins working on 
problem C2. 

c. The MATCH Function -- 

The MATCH function is a version of the 
unification algorithm that has been modified so 
that renaming of variables and substitutions of 
variable values back into formulas are avoided. 
The key idea is that the identity of a variable is 
determined by both the variable name and the 
binding list on which its value will be stored. 

The value of a variable is also a pair: the term 
that will replace the variable and the binding list 
associated with the term. The binding list 
associated with the term is used to find the values 
of variables occurring in the term when needed. 
Notice that variables do not have to be renamed 
because MATCH is always called (initially) with two 
distinct binding lists, giving distinct identities 
to the variables in the two expressions to be 
matched, even if the same variable name occurs in 
both of them. 

MATCH assigns a value to a variable by CONSing 
it to the CAR of the variable's binding list using 
the RPLACA function; it also puts that binding list 
on the list bound to the Lisp variable SAVE in 
PROVE. This is done so-that the effects of MATCH 
can be undone when PROVE backtracks to recover from 
a failed application of an axiom. 

VII EFFICIENCY 

HCPRVR is surprisingly efficient for its 
simplicity. The compiled code fits in 2000 octal 
words of binary programming space and runs as fast 

t: 
the Prolog interpreter. Although the speed can 
further improved by more sophisticated 

programming, we have not done so because it is 
adequate for our present needs. A version of 
HCPRVR has been written in C; it occupies 4k words 
on a PDP11/60 and appears to run about half as fast 
as the compiled Lisp version does on a DEC KIlO. 

The most important kind of efficiency we have 
noticed, however, is program development 
efficiency, the ease with which logic programs can 
be written and debugged. We have found it easier 
to write natural language processing systems in 
logic than in any other formalism we have tried. 
Grammar rules can be easily written as axioms, with 
an unrestricted mixture of syntactic and 
non-syntactic computations. Furthermore, the same 
grammar rules can be used for parsing or generation 
of sentences with no change in the algorithm that 
applies them. Other forms of natural language 
processing are similarly easy to program in logic, 
including schema instantiation, question-answering 
and text summary. We have found HCPRVR very useful 
for gaining experience in writing logic programs. 
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