
ABSTRACT

HCPRVR: AN INTERPRETER FOR LOGIC PROGRAMS

Daniel Chester
Department of Computer Sciences
University of Texas at Austin

An overview of a logic program interpreter
written in Lisp is presented. The interpreter is a
Horn clause-based theorem prover augmented by Lisp
functions attached to some predicate names. Its
application to natural language processing is
discussed. The theory of operation is explained,
including the high level organization of the PROVE
function and an efficient version of unification.
The paper concludes with comments on the overall
efficiency of the interpreter.

An axiom is either an atomic formula, which
can be referred to as a fact, or an expression of
the form

(<conclusion> < <premissl> .*. <premissN>)

where both the conclusion and the premisses are
atomic formulas. The symbol "<" is intended to be
a left-pointing arrow.

An atomic formula is an arbitrary Lisp ___ -
expression beginning with a Lisp atom. That atom
is referred to as a relation or predicate name.
Some of the other atoms in the expression may be
designated as variables by a flag on their property
lists.

I INTRODUCTION

III CALLING LOGIC PROGRAMS - --
HCPRVR, a Horn Clause theorem PRoVeR, is a

Lisp program that -interprets a

simple logical

formalism as a programming language. It has been
used for over a year now at the University of Texas
at Austin to write natural language processing
systems. Like Kowalski [II, we find that
programming in logic is an efficient way to write
programs that are easy to comprehend. Although we
now have an interpreter/compiler for the logic
programming language Prolog [2], we continue to use
HCPRVR because it allows us to remain in a Lisp
environment where there is greater flexibility and
a more familiar notation.

This paper outlines how HCPRVR works to
provide logic programming in a Lisp environment.
The syntax of logic programs is given, followed by
a description of how such programs are invoked.
Then attachment of Lisp functions to predicates is
explained. Our approach to processing natural
language in logic programs is outlined briefly.
The operation of HCPRVR is presented by giving
details of the PROVE and MATCH functions. The
paper closes with some remarks on efficiency.

II LOGIC PROGRAM SYNTAX ~___-- ___

A logic program is an ordered list of axioms. --

-e--e
* This work was supported by NSF Grant MCS 74-2491 -8.

There are two ways to call a logic program in
HCPRVR. One way is to apply the EXPR function TRY
to an atomic formula. The other way is to apply
the FEXPR function ? to a list of one or more
atomic formulas, i.e., by evaluating an expression
of the form

(? <formulal> ..- <formulaN> >

In either case the PROVE function is called to try
to find values for the variables in the formulas
that makes them into theorems implied by the
axioms. If it finds a set of values, it displays
the formulas to the interactive user and asks him
whether another set of values should be sought.
When told not to seek further, it terminates after
assigning the formulas, with the variables replaced
by their values, to the Lisp atom VAL.

IV PREDICATE NAMES AS FUNCTIONS ~-

Occasionally it is useful to let a predicate
name be a Lisp function that gets called instead of
letting HCPRVR prove the formula in the usual way.
The predicate name NEQ*, for example, tests its two
arguments for inequality by means of a Lisp
function because it would be impractical to have
axioms of the form (NEQ* X Y) for every pair of

93

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved.

constants X and Y such that X does not equal Y.
Predicate names that are also functions are FEXPRs
and expect that their arguments have been expanded
into lists in which all bound variables have been
replaced by their values. These predicate names
must be marked as functions by having the Lisp
property FN set to T, e.g., executing
(PUT '<predicate name> 'FN T), so thi: HCPRVR will
interpret them as functions.

By letting syntactic categories be predicates
with three arguments, we can make axioms that pull
phrases off of a list of words until we get a
sentence that consumes the whole list. In
addition, arbitrary tests can be performed on the
phrase representations to check whether they can be
semantically combined. Usually the phrase
representation in the conclusion part of an axiom
tells how the component representations are
combined, while the premisses tell how the phrase
should be factored into the component phrases, what
their' representations should be, and what
restrictions they have. Thus, the axiom

((S X (U ACTOR V . W) Z) < (NP X V Y)
(VP Y (U . W) Z)
(NUMBER v ~1)
(NUMBER U N2)
(EQ N1 N2))

says that an initial segment of word list X is a
sentence if first there is a noun phrase ending
where word list Y begins, followed by a verb phrase
ending where word list Z begins, and both phrases
agree in number (singular or plural). Furthermore,
the noun phrase representation V is made the actor
of the verb U in the verb phrase, and the rest of
the verb phrase representation, W, is carried along
in the representation for the sentence.

After suitable axioms have been stored, the
sentence THE CAT IS ON THE MAT can be parsed by
typing

(? (S (THE CAT IS ON THE MAT) x NIL)

The result of this computation is the theorem

(S (THE CAT IS ON THE MAT)
(IS ACTOR (CAT DET THE)

LOC (ON LOC (MAT DET THE)))
NIL)

VI THEORY OF OPERATION --

A. General Organization

HCPRVR works essentially by the problem
reduction principle. Each atomic formula can be
thought of as a problem. Those that appear as
facts in the list of axioms represent problems that
have been solved, while those that appear as
conclusions can be reduced to the list of problems
represented by the premisses. Starting from the
formula to be proved, HCPRVR reduces each problem
to lists of subproblems and then reduces each of
the subproblems in turn until they have all been
reduced to the previously solved problems, the
"facts" on the axiom list. The key functions in
HCPRVR that do all this are PROVE and MATCH.

B. The PROVE Function -~

PROVE is the function that controls the
problem reduction process. It has one argument, a
stack of subproblem structures. Each subproblem
structure has the following format:

(<list of subproblems>.<binding list>)

where the list of subproblems is a sublist of the
premisses in some axiom and the CAR of the binding
list is a list of variables occurring in the
subproblems, paired with their assigned values.
When PROVE is initially called by TRY, it begins
with the stack

(((<formula>) NIL))

The algorithm of PROVE works in depth-first
fashion, solving subproblems in the same
left-to-right order as they occur in the axioms and
applying the axioms as problem reduction rules in
the same order as they are listed. PROVE begins by
examining the first subproblem structure on its
stack. If the list of subproblems in that
structure is empty, PROVE either returns the
binding list, if there are no other structures on
the stack, i.e., if the original problem has been
solved, or removes the first structure from the
stack and examines the stack again. If the list of
subproblems of the first subproblem structure is
__ empty, not PROVE examines the first subproblem on
the list. If the predicate name in it is a
function, the function is applied to the arguments.
If the function returns NIL, PROVE fails; otherwise
the subproblem is removed from the list and PROVE
begins all over again with the modified structure.

94

When the predicate name of the first
subproblem in the list in the first subproblem
stucture is not a function, PROVE gets all the
axioms that are stored under that predicate name
and assigns them to the local variable Y. At this
point PROVE goes into a loop in which it tries to
apply each axiom in turn until one is found that
leads to a solution to the original problem. It
does this by calling the MATCH function to compare
the conclusion of an axiom with the first
subproblem. If the match fails, it tries the next
axiom. If the match succeeds, the first subproblem
is removed from the first subproblem structure,
then a new subproblem structure is put on the stack
in front of that structure. This new subproblem
structure consists of the list of premisses from
the axiom and the binding list that was created at
the time MATCH was called. Then PROVE calls itself
with this newly formed stack. If this call returns
a binding list, it is returned as the value of
PROVE. If the call returns NIL, everything is
restored to what it was before the axiom was
applied and PROVE tries to apply the next axiom.

The way that PROVE applies an axiom might be
better understood by considering the following
illustration. Suppose that the stack looks like
this:

(((Cl C2).<blist>) ..*)

The first subproblem in the first subproblem
structure is Cl. Let the axiom to be applied be

(C < Efl P2 P3)

PROVE applies it by creating a new binding list
blist', initially empty, and then matching C with
Cl with the call (MATCH C <blist'> Cl <blist>). If
this call is successful, the following stack is
formed:

(((Pl P2 P3).<blist'>) ((C2).<blist>) e..)

Thus problem Cl has been reduced to problems Pl, P2
and P3 as modified by the binding list blist'.
PROVE now applies PROVE to this stack in the hope
that all the subproblems in it can be solved.

In the event that the axiom to be applied is
cc>, that is, the axiom is just a fact, the new
stack that is formed is

((().<blist'>) ((C2).<blist>) . . .)

When PROVE is called with this stack, it removes
the first subproblem stucture and begins working on
problem C2.

c. The MATCH Function --

The MATCH function is a version of the
unification algorithm that has been modified so
that renaming of variables and substitutions of
variable values back into formulas are avoided.
The key idea is that the identity of a variable is
determined by both the variable name and the
binding list on which its value will be stored.

The value of a variable is also a pair: the term
that will replace the variable and the binding list
associated with the term. The binding list
associated with the term is used to find the values
of variables occurring in the term when needed.
Notice that variables do not have to be renamed
because MATCH is always called (initially) with two
distinct binding lists, giving distinct identities
to the variables in the two expressions to be
matched, even if the same variable name occurs in
both of them.

MATCH assigns a value to a variable by CONSing
it to the CAR of the variable's binding list using
the RPLACA function; it also puts that binding list
on the list bound to the Lisp variable SAVE in
PROVE. This is done so-that the effects of MATCH
can be undone when PROVE backtracks to recover from
a failed application of an axiom.

VII EFFICIENCY

HCPRVR is surprisingly efficient for its
simplicity. The compiled code fits in 2000 octal
words of binary programming space and runs as fast

t:
the Prolog interpreter. Although the speed can
further improved by more sophisticated

programming, we have not done so because it is
adequate for our present needs. A version of
HCPRVR has been written in C; it occupies 4k words
on a PDP11/60 and appears to run about half as fast
as the compiled Lisp version does on a DEC KIlO.

The most important kind of efficiency we have
noticed, however, is program development
efficiency, the ease with which logic programs can
be written and debugged. We have found it easier
to write natural language processing systems in
logic than in any other formalism we have tried.
Grammar rules can be easily written as axioms, with
an unrestricted mixture of syntactic and
non-syntactic computations. Furthermore, the same
grammar rules can be used for parsing or generation
of sentences with no change in the algorithm that
applies them. Other forms of natural language
processing are similarly easy to program in logic,
including schema instantiation, question-answering
and text summary. We have found HCPRVR very useful
for gaining experience in writing logic programs.

REFERENCES

[l] Kowalski, R. A. "Algorithm = logic +
control." CACM 22, 7, July, 1979, 424-436.

[2] Warren, D. H., L. M. Pereira, and F.
Pereira. "PROLOG - the language and its
implementation compared with lisp." Proc.
SymP' AI and Prog. Langs., SIGPLAN 12, -___
8/sIGARTx4, August, 1977, 109-115.

95

