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ABSTRACT 

RUE resolution represents a reformulation of 
binary resolution so that the basic rules of 
inference (RUE and NRF) incorporate the axioms of 
equality. An RUE theorem prover has been imple- 
mented and experimental results indicate that this 
method represents a significant advance in the 
handling of equality in resolution. 

A. Introduction 

In (1) the author presented the complete 
theory of Resolution by Unification and Equality 
which incorporates the axioms of equality into two 
inference rules which are sound and complete to 
prove E-unsatisfiability. Our purpose here is to 
present systematically the results of experiments 
with an RUE theorem prover. 

The experiments chosen were those of McCharen, 
Overbeek and Wos (2), ahd in particular we are 
interested in comparing the results achieved by 
these two theorem provers. 

In MOW, the equality axioms were used expli- 
citly for all theorems involving equality and 
apparently no use was made of paramodulation. In 
RUE, where proofs are much shorter, the inference 
rules themselves make implicit use of the equality 
axioms which do not appear in a refutation and also 
no use of paramodulation is made. Both systems 
are pure resolution-based systems. 

Before considering the experiments, we first 
review and summarize the theory of resolution by 
unification and equality as presented in (1). 
There we define the concept of a disagreement set, 
the inference rules RUE and NRF, the notion of 
viability, the RUE unifying substitution and an 
equality restriction which inhibits redundant 
inferences. Here we simply introduce the concept 
of a disagreement set and define the rules of 
inference. 

A disagreement set of a pair of terms (tl,t2) 
is defined in the following manner : 

is the on y disagreement set and if 
"If (tl,ts) are identical, the empty ;;st2) 

differ, the set of one pair { (tl,t2) 
is the origin disagreement set. i, Furt ermore, 
if tl has the form f(al,...,ak) and t2 the 
form f(bl,...,bk), then the set of pairs of 
corresponding arguments which are not iden- 
tical is the topmost disagreement set -0 

In the simple example : 

tl = f( at g(WW) 1 

t2 = f( a', g(b',h(c')) 1 
besides the origin disagreement, there are the 
disagreement sets : 

Dl = i (ana'), ( g(b,h(c)) ,g(b',h(c')) 1) 

D2 = { (a,a'), (b,b'), (h(c) ,h(c') 1) 

D3 = ( tara'), (b,b'), (c,c') 1 

This definition merely defines all possible 
ways of proving t =t , i.e. we can prove t =t 
by proving equali 4 12 y ?n every pair of any one 
disagreement set. An input clause set, for ex- 
ample, may imply equality in D 

D3' 

but not in D2 
Or it may most directly phove tl=t2 by 

or 

proving equality in D3. 

We proceed to define a disagreement set of -- 
complementary literals : 

W1,...,sn) f;(t, v.,tn) 
as the union of disagreement sets : 

D = .U D i=l,n i 
where D i is a disagreement set of (si,ti). 

We see immediately that : 

P(sl"",sn) A ht1 I-O&~) * D 
where D now represents the disjunction of inequal- 
ities specified by a disagreement set of P,;, 
and furthermore, that : 

f(al~~~~,ak) # f(blto..,bk) --$ D 
where D is the disjunction of inequalities speci- 
fied by a disagreement set of f(al,...,ak), 
f(bl,-wbk) 0 For example, 

p(f(a,g(b,h(c)))) A F(f(a',g(b',h(c')))) 
4 afa' A bfb' A cfc' . 

The reader is invited to read (1) which 
states the complete theory of RUE resolution with 
many examples. Our primary concern here is to 
discuss experiments with an RUE theorem prover 
and to begin to assess the effectiveness of this 
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inference system. 

we 

Experiments 

Our experiments deal with Boolean Algebra 
are asked to prove from the eight axioms : 

Al :x+0=x 
A2 :x*1=x 
A3 :x+Z=l 
A4 : x *xt=o 
A5 : x(y+z) = xy +x2 
A6 : x + yz = (x+y) (x+2) 
A7 :x+y=y+x 
A0 :x*y=y*x 

(we are denoting logical or by +r logical and by * 
or juxtaposition, and negation by overbar), 

the following theorems : 

and 

a*0 # 0 

I 
- x*x = 0 

a*: # a*0 

d = (a/x} 

- x(y+z) = xy + xz (7 ={a/x} 

y+z # ;; ay+az # a*0 

t- 
x+0=x o- = E a/y,o/z *a/x j 

a*: + a*0 # a*0 

t- 
0+x=x 0- =la*O/x) 

Tl : Z=l 

T2 :x+1=1 

T3 :x*0=0 

T4 : x + xy = x 

T5 : x(x+y?" = x 

T6 :x+x=x 

T7 :x*x=x 

T8 : (x+y) +z = x+(y+z) 

T9 : (x*y)*z = x* (y*z) 

TlO : the complement of x is unique 
(x*a=O) (x+a=l) (x*b=O) (x+b=l) 4 a= b 

Tll :z=x 
-- 

T12 :x+y =x*y De Morgan's Law I 
-- 

T13 :x*y=x+;; De Morgan's Law II 

These theorems are stated in the order of 
increasing complexity of proof, with 6= 1 being 
trivially easy for a human to prove and De Morgan's 
Laws being very difficult for a human to deduce 
from the axioms. 

George and Garrett Birkhoff have a paper on 
the above proofs published in the Transactions of 
the American Mathematical Society (3) and Halmos 
comments on the significantly difficult character 
of the proofs in his Lectures on Boolean Algebras 
(4) 0 

The following is a machine deduced, five step 
RUE refutation which proves x*0 = 0 : 

0 # a*a 

- 0 = x*; 

D 

o-=<a/x] 

The above experiments together with many 
others (dealing with group theory, ring theory, 
geometry, Henken Models, set theory and program 
verification) were proposed as benchmarks by 
McCharen,Overbeek and Wos, who in (2) published 
the results of their own experiments. 

We here tabulate the comparative performance 
of the RUE and MOW theorem provers on the above 
thearems. The MOW theorem prover uses binary 
resolution with explicit use of the equality 
axioms and is implemented in Assembly language 
on the IBM System 370-Model 195. Great effort was 
made to enhance the efficiency of their theorem 
prover and this is described in (2). The RUE 
theorem prover, on the other hand, represents a 
first implementation in PLl on a CDC 6600 machine 
which is much slower than the Model 195. 

In the experiments each theorem is treated 
as an independent problem and cannot use earlier 
theorems as lemmas, so that for example in proving 
associativity (T8), we need to prove (T2,T3,T4,T5) 
as sub-theorems. The total number of unifications 
performed is suggested as the primary measure of 
comparison rather than time. The comparative 
results are given in Table 1. 

From Tl to T7, The RUE theorem prover was 
very successfull, but at T8 (associativity) 
results have yet to be obtained since refinements 
in the heuristic pruning procedure are required 
and are being developed with the expectation that 
more advanced results will be available at the 
conference. 

RUE represents one of several important 
methods for handling equality in resolution and 
it is important to emphasize that it is a complete 
method whose power is currently being tested in 
stand-alone fashion. However, it is not precluded 
that we can combine this method with other tech- 
niques such as demodulation,paramodulation and 
reduction theory to achieve a mutually enhanced 
effect. 
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TABLE 1. 

THEOREM TOTAL NUMBER OF 
UNIFICATIONS 

RUE : MOW 

Tl 'i=l 77 26,702 

T2 x+1=1 688 46,137 

T3 x*0=0 676 46,371 

T4 x+xy=x 3,152 see below 

T5 X(X+Y) = x -3,113 tl I! 

T7 X*X=X 2,145 n m 

T6rrT7 4,326(l)105,839 

T8 (x+y)+z = x+(y+z) IP 413,455 

T9 (x*y)*z = x*(y*z) IP NPR 

TlO ';:;~;I ';;-;I+ a=b IP NPR 
( -I( 1 

e 
Tll z =x IP NPR 

T12 x+y = ;; * ;; IP NPR 
- - - 

T13 x*y=x+y IP NPR 

TIME LENGTH OF PROOF 
(SECONDS) 

RUE : MOW RUE : MOW 

10.1 27.5 7 

51.5 " " 12 

102.9 57.0 24 

41.6 see below 13 

Note 1 : To prove the double theorem, T4,,T5, 
x+xy=x A x(x+y)=x, we add the negated theorem as 
a single clause, a+ab#a v a(a+b)#a , to the input 
clause set. It is evident that the erasure of 
these two literals in a refutation decomposes into 
two independent subproblems since no variables 
appear in the clause. Hence, the refutations for 
a+ab#a and a(a+b)#a obtained in separate experi- 
ments T4,T5 can be concatenated and the results 
of these experiments simply summed which is what 
we have done to state the RUE results for the 
double theorem. The same holds true for T6hT7. 

* The estimated length of MOW proofs with the 
equality axioms is twice as long as corresponding 
RUE proofs. 
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The completion of these Boolean experiments 
together with other experiments with a more fully 
delineated comparative analysis with systems other 
than MOW represents work the author will report 
upon in the future. 
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