
HEARSAY-III:
A Domain-Independent Framework for Ex

Robert Balzer
Lee Ermzrn

Philip London
Chuck Williams

USC/Information Sciences Institute*
Marina del Rey, CA 90291

Abstract
Hearsay-Ill is a conceptually simple extenslon of the basic ideas in
the Hearsay-II speech-understanding system [a]. That domain-
dependent expert system was, in turn, a product of a tradition of
increasingly sophisticated production-rule-based expert systems.
The use of production systems to encapsulate expert knowledge
in manageable and relatively independent chunks has been a
strong recurrent theme in Al. These systems have steadily grown
more sophisticated in their pattern-match and action languages,
and in their conflict-resolution mechanisms [la]. In this paper,
we describe the Hearsay-Ill framework, concentrating on its
departures from Hearsay-II.

1. The Heritage From Hearsay-II
Hearsay-II provided two major advances -- the structuring of

the workspace, called the bhckboard in Hearsay, and the

structuring of the search, via scheduling mechanisms. The

blackboard provided a two-dimensional structure for

incrementally building hierarchical interpretations of the

utterance:

- levels which contained different representations (and
levels of abstraction) of the domain (phones,
syllables, words, phrases, etc.).

- a location dimension (the time within the spoken
utterance) which positioned each partial
interpretation within its level.

Knowledge sources (KSs), relatively large production rules, were
agents which reacted to blackboard changes produced by other
KSs and in turn produced new changes. The expertise was thus
organized around the activity of building higher-level, more

encompassing partial interpretations from several nearby lower-

level partial interpretations (e.g., aggregating three contiguous

syllables into a word) and producing lower-level ones from

higher-level ones (e.g., predicting an edjacent word on the basis
of an exisiting phrase interpretation).

Within this aggregation-based interpretation-building paradigm,
Hearsay-II also provided a method for exploring alternative
interpretations, i.e., handling search. Interpretations conflicted if

they occupied the same or overlapping locations of a level;

conflicting interpretations competed as alternatives. Thus, in

addition to organizing activity around the interpretation-building

process, Hearsay-II also had to allocate resources among
competing interpretations. This required expertise in the form of
critics and evaluators, and necessitated a more complex

‘This research wss supported by Defense Advrnced Research Projects Agency
contrect DAK15 72 C 0308 View.s and conclusions contained in this document ere
those of the authors and rho&l not be interpreted em representing the official
opinion or policy of DARPA, the U.S. Government, or eny other person or egency
connected with thorn.

scheduler, which at each point

one previously-matched KS.**

chose for execution the action of

2. The Directions for Hearsay-III
To this heritage, we bring two notions that motivate most of

our changes:

- Through simple generalization, the
can be made domain independent.

Hearsay approach

- Scheduling is itself so complex a task that the
Hearsay blackboard-oriented knowledge-based

approach is needed to build adequate schedulers.***

Our generalizations

activities:

consist of systematizing the main blackboard

- aggregating several interpretations at one
a composite interpretation at a higher level,

level into

- manipulating alternative interpretations (by creating
a placeholder for an unmade decision, indicating the
alternatives of that decision, and ultimately replacing
the placeholder by a selected alternative), and

- criticizing proposed interpretations.

The complexity of scheduling is handled by introducing a
separate, scheduling blackboard whose base data is the

dynamically created activation records of KSs. These include

both the domain-dependent KSs, which react to the regular,

domain blackboard, and scheduling KSs, which react to changes

on the scheduling blackboard as well. The organization of these

activations (with agendas, priorities, etc.) is left to the application
writer; Hearsay-Ill provides only the basic mechanisms for

building expert systems. Thus domain KSs can be viewed as the

legal move generators (competence knowledge) with the

scheduling KSs controlling search (performance knowledge).

3. Blackboard Structure
In Hearsay-II, nodes on the blackboard, which represented

partial interpretations, were called hypotheses. In Hearsay-Ill, we
adopt the more neutral term unit. Hearsay-Ill provides primitives
for creating units and aggregating them, i.e., associating them
hierarchically. The blackboard is implemented in a general-
purpose, typed, relational database system (built on top of

INTERLJSP), called A83. AP3 has a pattern-matching language; this

“A good discussion of scheduhng WI Hearsay-II csn be found in (51

“‘This notlon, in one form
owemple, [6], (21. and [III

another, is common to 8 number of others, for

108

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved.

is used for retrieval from the blackboard. AP3 also has demons;

the triggering pattern which the application writer supplies as

part of the definition of a KS is turned into an AP3 demon.

The blackboard levels of Hearsay-II have been generalized

somewhat into a tree-structure of classes. Each unit is created

permanently as an instance of some class. The unit is, by

inheritance, also an instance of all superclasses of that class. The

apex of the class tree is the general class Unit. The immediate

subclasses of Unit are DomainUnit and SchedulingUnit; these

classes serve to define the domain and scheduling blackboards.

All other subclasses are declared by the application writer,

appropriate to his domain. For example, in the SAFE application,

which is a system for building formal specifications of programs

from informal specifications [l], one of the subclasses of

DomainUnit is ControlFragment, and it has subclasses Sequence,

Parallel, Loop, Conditional, Demon, etc. The semantics of the unit

classes other than Unit, DomainUnit, and SchedulingUnit are left to

the application writer.

Any unit may serve to denote competing alternative

interpretations. Such a unit, called a Choice Set, represents a

choice point in the problem-solving. The Choice Set is a place-
holder for the interpretation it represents; it can be dealt with as

any other unit, including its incorporation as a component into

higher-level units. Associated with a Choice Set unit are the

alternatives of the choice. These may be explicit existing units or

they may be implicit in a generator function associated with the

Choice Set. When appropriate, a KS may execute a Select
operation on a Choice Set, replacing it with the selected
alternative. The Selection can be done in a destructive,

irrevocable manner, or it can be done in a new contezt, retaining

the ability to Select another alternative. Contexts are described

more in Section 5.

Hearsay-II’s location dimension (e.g., time-within-utterance in

the speech-understanding domain) is not imposed on the

Hearsay-III blackboard. The application writer may create such a
dimension, either inherently in the interconnection structure of

units or explicitly as values associated with the units. The

flexibility of the underlying relational database system allows

such constructs to have first-class status, for example, to be used

in KS triggering patterns.

4. Scheduling
Hearsay-Ill retains Hearsay-II’s basic sequencing of KS

execution: When the triggering pattern of a KS is matched by a

configuration of data on the blackboard, an activation record is

created containing the information needed to execute the KS in

the environment of the match. At some later time, the activation

record may be selected and saecuted, i.e., the KS’s action, which

is arbitrary code, is run. The executing KS has available to it the

blackboard data that triggered it, which usually serves as the

initial focus for the activity of the execution.

Each KS execution is indivisible; it runs to completion and is not

interrupted for the execution of any other KS activation. The

effect of a KS execution is an updated blackboard. lndpendent

activations of the same KS can pursue the same exploration by
retrieving (potentially private) state information from the
blackboard.

The scheduling problem is: given the current state of the

system, select the appropriate activation record to execute next.

The separation of KS execution from triggering allows for
complex schedultng schemes (i.e., a large collection of activations

may be available from which to select). To allow the application

writer to use the Hearsay problem-solving features for building

such schemes, several mechanisms were added in Hearsay-Ill:

- Each activation record is a unit on the scheduling
blackboard. The application writer supplies, as part
of the definition of each KS, code to be executed
when the triggering pattern is matched; this code
computes a scheduling-blackboard class (level) in
which the activation record will be created.

- When executed, scheduling KSs are expected to make
changes to the scheduling blackboard to facilitate
organizing the selection of activation records. In
addition to triggering on changes to the domain
blackboard, scheduling KSs can trigger on changes to
the scheduling blackboard, including the creation of
activation records. The actions a scheduling KS may
take include associating information with activation
records (e.g., assigning priorities) and creating new
units that represent meta-information about the
domain blackboard (e.g., pointers to the current
highest-rated units on the domain blackboard). The
scheduling blackboard is the database for the
scheduling problem.

- The application writer provides a base scheduler
procedure that actually calls the primitive Eaecute
operation for executing KS activations. We intend
the base scheduler to be very simple; most of the
knowledge about scheduling should be in the
scheduling KSs. For example, if the scheduling KSs
organize the activation records into a queue, the
base scheduler need consist simply of a loop that
removes the first element from the queue and calls
for its execution. If the queue is ever empty, the
base scheduler simply terminates, marking the end of
system execution.

5. Context Mechanism
While Choice Sets provide a means for representing an unmade

decision about alternative interpretations, we still need a method

of investigating those alternatives independently. For that,

Hearsay-Ill supports a context mechanism similar to those found in

Al programming languages such as QA4 [lo] and CONNIVER [9].

The method by which KS triggering interacts with the context
mechanism allows controlled pursuit of alternative lines of

reasoning. A KS triggers in the most general context (highest in

the tree) in which its pattern matches. ixecution of that KS

occurs in the same context and, unless it explicitly switches

contexts, its changes are made in that context and are inherited

down toward the leaves.

Contexts are sometimes denoted as unsuitable for executing

KSs -- a condition called poisoned. Poisoned contexts arise from

the violation of a Hearsay constraint (e.g., attempting to
aggregate conflicting units). In addition, a KS can explicitly poison

a context if, for example, the KS discovers a violated domain

constraint. A KS activation whose execution context is poisoned

is placed in a wait state until the context is unpoisoned. Special

KSs, called poison handlers, are allowed to run in poisoned

contexts, and specifically serve to diagnose and correct the
problems that gave rise to the poisoning.

A common application for the context mechanism arises when

alternative interpretations lack good “locality”. First consider the

109

exampfe of SAFE% Pfanning Phase, which uses Choice Sets to

represent alternative interpretations for control fragments. In

the case of the input sentence

“Send an acknowledgment to the imp and pass the
message on to the host.”

a Choice Set served well. The possible interpretations for this

sentence include being put in parallel or in sequence with an

existing structure; since all alternatives would be positioned

identically in the existing aggregate structure, the Choice Set unit

can be placed where the chosen interpretation eventually will go.

In some cases, however, locality is lacking. An example is the

input sentence,

“After receiving the message, the imp passes it to
the host.”

The possible interpretations for this include a demon (“The

occurrance of r triggers y”) and a sequence to be embedded in

an existing procedure (“After r do y”). Since the demon

interpretation resides at the same structural level as the

procedure into which the sequence would be embedded, there is

no convenient place to put the Choice Set representing these
alternatives. Instead, the KSs producing these alternative
interpretations put them in brother contexts, so that each can be
pursued independently.

6. Relational Database
As mentioned earlier, the blackboard and all publicly accessible

Hearsay-Ill data structures are represented in the AP3 relational

database. In addition, any domain information which is to cause

KS firing must also be represented in the database. This is

because KSs are AP3 demons, and their triggering is controlled

by activity in the database.

The AP3 database is similar to those available in languages

such as PLANNER [7], but also includes strong typing for each of
the relational arguments in both assertion and retrieval. These

typed relational capabilities are available for modeling directly

the application domain.

7. Implementation and Current Status
The Hearsay-Ill system is implemented in AP3, which in turn is

implemented in INTERLISP [12]. AP3 was chosen as an

implementation language because it already contained the

mechanisms needed to support Hearsay-Ill (e.g., contexts, demons

and constraints, and strong typing). In fact, the design of
Hearsay-Ill’s initial implementation was almost trivial, being largely

a set of AP3 usage conventions. However, efficiency
considerations have forced a substantial implementation effort.

Hearsay-Ill has been tested on two small applications: a
cryptarithmatic problem and a cryptogram decoding problem.
Three major implementation efforts are currently underway. The

first of these, as described above, is the reimplementation of the

SAFE system [l]. Second, Hearsay is being used as the basis for

a system for producing natural language descriptions of expert=
system data structures [8]. Finally, the system is being used as
the basis for a “jitterer” which automatically transforms a
program so tHat a transformation chosen by a user is applicable

143.

The Hearsay-Ill architecture seems to be a helpful one. The
separation of competence knowledge from p.erformance

knowledge helps in rapidly formulating the expert knowledge

required for a solution. Pretiminary experience with the larger

applications now under development seem to bear this out, and
seem to indicate that performance (scheduling) is a difficult issue.

The flexibility that the Hearsay-III architecture gives toward

developing scheduling algorithms will undoubtably go a long way
toward simplifying this aspect of the overall problem-solving

process.

Acknowledgments
We wish to thank Jeff Barnett, Mark Fox, and Bill Mann for

their contributions to the Hearsay-Ill design. Neil Goldman has
provided excellent and responsive support of the AP3 relational
database system. Steve Fickas, Neil Goldman, Bill Mann, Jim
Moore, and Dave Wile have served as helpful and patient initial
users of the Hearsay-Ill system.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Balzer, R., N. Goldman, and D. Wile, “Informality in Program
Specifications,” IEEE Trans. Software Enp. SE-4, (21, March
1978.

Davis, R., Meta-Rules: Reasoning About Control, MIT Al
Laboratory, Al Memo 576, March 1980.

Erman, L. D., F. Hayes-Roth, V. R. Lesser, and D. R. Reddy,
“The Hearsay-II Speech-Understanding System: Integrating
Knowledge to Resolve Uncertainty,” Computing Surveys 12,
(2), June 1980. (To appear)

Fickas, S., “Automatic Goal-Directed Program
Transformation,” in 1st NationaL Artificial Intelligence Conf.,

Palo Alto, CA, August 1980. (submitted)

Hayes-Roth, F., and V. R. Lesser, “Focus of Attention in the
Hearsay-II System,” in Proc. 5th International Joint
Conference on Artificial Intefligence, pp. 27-35, Cambridge,
MA, 1977.

Hayes-Roth, B., and F. Hayes-Roth, Cognitive Prooesses in
Phning, The Rand Corporation, Technical
Report R-2366-ONR, 1979.

Hewitt, C. E., Description and Theoretical Analysis (Using
Schemata) of PLANNER: A Language for Proving Theorems
and Manipulating Models in a Robot, MIT Al Laboratory,
Technical Report TR-258, 1972.

Mann, W. C., and J. A. Moore, Computer as Author -- Results
and Prospects, USC/Information Sciences Institute, Technical
Report RR-79-82, 1979.

McDermott, D., and G. J. Sussman, The CONNIVER Reference
Manual, MIT Al Laboratory, Memo 259a, 1974.

Rulifson, J. F., R. J. Waldinger, and J. A, Derksen, “A Language
for Writing Problem-Solving Programs,” in ZFIP 71,
pp. 201-205, North-Holland, Amsterdam, 1972.

Stefik, M., Planning with Constraints, Ph.D. thesis, Stanford
University, Computer Science Department, January 1980.

Teitelman, W., lnterlisp Reference ManuaL, Xerox Palo Alto
Research Center, 1978.

Waterman, D. A., and F. Hayes-Roth, Pattern-Directed
fnference Systems, Academic Press, New York, 1978.

110

