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Abstract 

The A-MIN method consists of a best-first backtracking algorithm 
applicable to a large class of information-gathering problems, 
such as most natural language analyzers, many speech 
understanding systems, and some forms of planning and 
automated knowledge acquisition. This paper focuses on the 
general A-MIN search-control method and characterizes the 
problem spaces to which it may apply. Essentially, A-MIN provides 
a best-first search mechanism over the space of alternate 
interpretations of an input sequence, where the interpreter is 
assumed to be organized as a set of cooperating expert modules.’ 

1. Introduction 
A present trend in Al is to design large systems as cooperating 

collections of experts, whose separate contributions must be 
integrated in the performance of a task. Examples of such systems 
include HEARSAY-II [4], POLITICS [l], PSI [5], SAM, [3]. The 
division of task responsibility and grain size of the experts differs 
markedly. For instance, the latter two systems contain few 
large-scale experts, which are invoked in a largely predetermined 
order, while the former two systems contain a larger number of 
smaller modules whose order of invocation is an integral part of 
problem solving task itself. 

In this paper I discuss a new search method, called A-MIN, that 
incorporates some of the desirable features from best-first search 
and some properties of gradient search. (Gradient search is 
locally-optimized hill-climbing.) The primary objective is to make 
global control decisions based on local knowledge provided by 
each expert module. No module is required to know either the 
internal structure of another module, or the overall controling 
search mechanism. In this way, I depart somewhat from the 
freerer blackboard control structure of HEARSAY-II, where search 
was controled by the experts themselves. The module that 
“shouted loudest” was given control, hence each module had to 
know when and how loud to shout with respect to other expert 
modules. In addition, there was a “focus knowledge source” [6] 
that helped guide forward search. This method acquires its 
flexibility by placing a substantial amount of global control 
responsibility on local experts. Moreover, it entails no 
externally-transparent search discipline. Finally, the primary 
emphasis is on forward search, not reconsidering wrong decisions 
in favor of choosing an alternate interpretation. In light of these 
considerations, I attempted to factor domain knowledge (what the 
experts know) from search discipline (when to pursue alternate 
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paths suggested by different experts), so that each problem may 
be investigated in its own right. Here, I focus on the search 
control aspect, and consider the internal structure of each domain 
expert as a virtual “black box”. 

To simplify matters, I confine my discussion to tasks whose 
terminating condition is defined by processing an input sequence 
to completion without error. This class of problems is exemplified 
by natural language analysis, where an input sentence is 
processed left-to-right and the goal state is the formation of a 
consistent semantic representation of the input. Clearly, this is a 
satisficing rather than optimizing task [8], in the sense that only 
the first of potentially many solutions is sought. Since I want the 
language analysis to give the same parse of the sentence as a 
human would, the process must be biased to favor reaching the 
appropriate solution first. This biasing process, based on local 
decisions made by expert modules is the primary input to the 
A-MIN search method described below. It must be noted, 
however, that the left-to-right processing assumption is more 
restrictive than the HEARSAY paradigm, where “islands of 
interpretation” could grow anywhere in the input sequence and, 
when possible, were later merged into larger islands until the 
entire input sequence was covered [6, 41. 

2. An Information-Gathering Search 
Space 

Consider a search space for the task of processing a finite 
sequence of input symbols (such as an English sentence) and 
producing an integrated representation incorporating all the 
information extracted from the input (such as a semantic 
representation of the meaning encoded in the sentence). The 
problem solver consists of a set of experts that may be applied at 
many different processing stages, without fixed constraints on 
their order of application. For instance, in the language analysis 
domain, one can can conceive of a verb-case expert, a 
morphological-transformation expert, an extra-sentential 
referent-identifier expert (or several such experts based on 
different knowledge sources), a dialog-context expert, an 
immediate-semantics expert, a syntactic-transformation expert, 
etc... A robust language analyzer must be capable of invoking any 
subset Of these and other experts according to dynamically 
determined needs in analyzing the sentence at hand. 

NOW, let US back off the natural language domain and consider 
the general class of problem 
information-gathering,* 

spaces to which an 
cooperating-expert approach appears 

useful. First, we draw a mapping between the general problem 
solving terminOlOgy and the expert module approach. The search 
space outlined below is a considerably constrained version of a 
general search space. This property is exploited in the A-MIN 

search method described in the fcllowing Section. 
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e The operators in the search space are the individual 
expert modules. Each module may search its own 
space internally, but I am concerned only with the 
macro-structure search space. Each expert has 
conditions of strict applicability and preference of 
applicability. The latter are used for conflict resolution 
decisions when more than one expert is applicable. 

o A state in the space consists of the total knowledge 
gathered by invoking the set of experts that caused 
the state transitions from the initial state to ihe 
present. This definition has two significant 
implications: An expert that adds no new knowledge 
when invoked does not generate a new state; 
therefore, it can be ignored by the search control. 
There is a monotonicity property in that each step 
away from the initial states adds information to the 
analysis, and therefore is guaranteed to “climb” to a 
potential final state. (Left-to-right, single-pass natural 
language analysis can exhibit such monotonic 
behavior.) 

e A final state is defined by having reached the end of 
the input sequence without violating a path constraint, 
and no expert can add more information (i.e., no 
transition in the state space is possible). 

e A path constraint is violated if either a new segment of 
the input cannot be incorporated or an expert asserts 
information that contradicts that which is already part 
of the current state. When this situation arises, 
directed backtracking becomes necessary. 

o The initial state is a (possibly empty) set of constraints 
that must be satisfied by any interpretation of the input 
sequence. For instance, a dialog or story context 
constrains the interpretation of an utterance in many 
natural language tasks. 

o Each expert can draw more than one conclusion 
when applied. Choosing the appropriate 
conclusion and minimizing backtracking on 
alternatives is where the real search problem 
lies. Choosing the next expert to apply is not a real 
problem, as the final interpretation is often 
independent of the order of application of experts. 
That is, since information-gathering is in principle 
additive, different application sequences of the same 
experts should converge to the same final state. The 
experts preselect themselves as to applicability. 
Selecting the expert who thinks it can add the most 
information (as in HEARSAY-II) only tends to shorten 
the path to the final state. The real search lies in 
considering alternate interpretations of the input, 
which can only be resolved by establishing 
consistency with later information gathered by other 
experts. Finally, given the possibility of focused 
backtracking fro& a dead end in the forward search, 
less effort needs to be directed at finding the “one 
and only correct expert” to apply. 

Search Metho 
A-MIN is a heuristic search method specifically tailored to the 

class of search spaces described above. It combines some of the 
more desirable features of gradient search and best-first search, 
with the modularized information sources of a cooperating-expert 
paradigm. Figure 3-O is the search-control strategy algorithm in 
an MLISP-style form. Subsequently I discuss how A-MIN works, 
exemplifying the discussion with a sample search-tree diagram. 

Every expert is responsible for assigning a 
likelihood-of-correctness value to each alternative in the 
interpretation it outputs. These values are only used to determine 
how much better the best alternative is than the next best 
alternatives, an item of information crucial to the backtrack control 
mechanism. There is no global evaluation function (the outputs of 
different experts are not directly comparable - it makes no sense 
to ask questions like: “Is this anaphoric referent specification 
better than that syntactic segmentation?“) Nor is there any 
mechanism to compute differences between the present state and 
the goal state. (Recall our definition of goal state -- only upon 
completion of the input processing can the goal state be 
established.) 

PROCEDURE A-MIN(initial-state. experts) 
altlist := NULL 
globaldelta := 0 
state := initial-state 
input := READ(firsfinput) 

NEXTOP: 
IF NULL(input) 

THEN RETURN(state) 
ELSE operator := SELECTBEST(APPLICABLE(experts)) 

IF NULL(operator) 
THEN input : = READ( next input) 
ALSO GO NEXTOP 
ELSE alts := APPLY(operator, state) 

IF NULL(alts) 
THEN MARK(operator. 'NOT-APPLICABLE, 'TEMP) 
ALSO GO NEXTOP 

bestalt := SELECTMAX(alts) 
IF Ilaltsll > 1 

THEN alts := FOR-EACH alt IN REMOVE(bestalt, alts) 
COLLECT <'ALT: alt, 

'STATE: state, 
'DELTA: globaldelta + VALUE(bestalt) 

- VALUE(alt)> 
altlist := APPEND(alts, altlist) 

NEWSTATE: 
state := MERGE-INFORMATION(state, bestalt) 
IF NOT(state = 'ERROR') 

GO NEXTOP ; if no error, continue gradient search, 
; else delta-min backup below 

WHILE state has no viable alternatives 
DO BEGIN 

MARK(state, 'DEAD-END, 'PERM) ; delete dead ends 
state := PARENT(state) ; from search tree 

END 
backup-point := SELECTDELTA-MIN(altlist) 
state := GET(backup-point. 'STATE:) 
globaldelta := GET(backup-point, 'DELTA:) 
bestalt := GET(backup-point, 'ALT:) 
altlist := REMOVE(backup-point. altlist) 
GO NEWSTATE 
END A-MIN 

Figure 3-1: The A-MIN Search-Control Algorithm 

Let us see how A-MIN can be applied to an abstract example, 
following the diagram in figure 3-Z The roman numerals in the 
arcs reflect the order in which they are traversed. At the initial 
state, expert-4 applies and generates three alternate 
interpretations of the input. One alternative is ranked as most 
likely. A “A” value is computed for the remaining alternatives, 

2 "lnformetion gathering" is a term coined by Rai Reddy to refer to encoding the difference in confidence that expert-4 had between 
search problems where progress towards agoalstateischaracterized by them and the most likely alternative. The more sure expert-4 is of 
accruing and integrating information from outside SOUrCeS. its best choice relative to the other alternatives, the larger the A 
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values. The best interpretation generated by expert-4 is integrated 
with the initial state constraints and found to be consistent. At this 
point, a new state has been generated and expert-2 applies to this 
state generating no new information. More input is read and 
expert-l applies, generating only one alternative, which is found to 
be consistent with the information in the present state. In a similar 
fashion, the rest of the tree in figure 3-xis generated. 

Up to now, we have witnessed an instance of gradient search, 
where a different evaluation function is applied at each node (The 
local evaluation function is, in effect, the expert who generated the 
likelihood values.) If no error occurs, (i.e., if the interpretation of 
the input remains consistent) no backup is needed. The likelihood 
rankings clearly minimize the chance of error as compared to 
straightforward depth first search. Now, let us consider the 
possibility of an inconsistency in the interpretation, as we continue 
to examine figure 3-X 

Figure 3-2: A-MIN Search Tree With Directed Backup 

The most likely interpretation generated by expert-6 was found 

to be inconsistent with the information in the present state. 

Backup is therefore necessary, given the depth-first nature of the 
search. But, where do we back up to? Normally, one might 
consider a depth-first unwinding of the search tree; but, is this the 
most reasonable strategy? Expert-5 was much less certain in its 
choice of best alternative than expert-6 (A = 2 vs A = 4). It seems 

more reasonable to doubt expert-5’s decision. Therefore, one 
wants to back up to the point where the probability of having 
chosen a wrong branch is highest, namely to the choice point with 
the minimal A (hence the name A-MIN). 

Continuing with figure 3-z we restore the state at expert-5 and 
incorporate the A = 2 interpretation. It is found to be consistent, 
and we apply expert-l to the new state. The best interpretation of 
expert-l leads to error, and backup is again required. Where to 
now? The minimal A is at expert-l, but this would mean choosing 
a non-optimal branch of a non-optimal branch. Lack of 
confidence in the choice from expert-5 should be propagated to 
the present invocation of expert-l. Hence, we add the two As in 
the path from the inital state and get the value: A =3, which is 
greater than the minimal A at expert-4 (A = 2). Therefore, we 
back up to expert-4. This process continues until a consistent 
interpretation of the entire input is found (i.e., a goal state is 
reached), or the search exhausts all viable alternate 
intepretations. 

Essentially, A-MIN is a method for finding one globally 
consistent interpretation of an input sequence processed in a 
predetermined order. In natural language analysis, the problem is 
to find a semantically, syntactically, and contextually consistent 
parse of a sentence. In speech understanding the constraint of 
formulating legal phonemes and words is added, but the nature of 
the problem and the applicability of the A-MIN approach remains 
the same. For instance, A-MIN is an alternate control structure to 
HARPY’s beam search [7], which also processes a sequence of 
symbols left to right, seeking a globally consistent interpretation. 

4. Concluding Remarks 
To summarize, the A-MIN method exhibits the following 

properties: 

o A-MIN is equivalent to gradient search while no error 
occurs. Path length (from the initial state) is not a 
factor in the decision function. 

o The backtracking mechanism is directed to undo the 
choice most likely to have caused an interpretation 
error. This method compares all active nodes in the 
tree, as in best-first search, but only when an error 
occurs (unlike best-first search). 

o Perseverance in one search path is rewarded, as long 
as the interpretation remains consistent, while 
compounding less-than-optimal alternate choices is 
penalized. This behavior falls out of the way in which 
A values are accrued. 

o No global evaluation function forces direct 
comparisons among information gathered by different 
knowledge sources. Such an evaluation function 
would necessarily need to encode much of the 
information contained in the separate experts, thus 
defeating the purpose of a modular 
cooperating-expert approach. The A comparisons 
contrast only the differences between locally-optimal 
and locally-suboptimal decisions. These differences 
are computed by local experts, but the comparisons 
themselves are only between relative ratings on the 
desirability of alternate decisions. 
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Additional discussion of implementation, analysis, and details of 
the A-MIN search method may be found in [2], where an effective 
application of A-MIN is discussed for constraining search in a 
natural language processing task. 
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