
Making Judgments

Hans J. Berliner
Computer Science Department

Carnegie-Mellon University
Pittsburgh, Pa. 15213

Abstract

Reasoning-based problem solving deals with discrete entities and

manipulates these to derive new entities or produce branching behavior

in order to discover a solution. This paradigm has some basic

difficulties when applied to certain types of problems. Properly

constructed arithmetic functions, such as those using our SNAC

principles, can do such problems very well. SNAC constructions have

considerable generality and robustness, and thus tend to outperform

hand coded case statements as domains get larger. We show how a

SNAC fimction can avoid getting stuck on a sub-optimal hill while

hill-climbing. A clever move made by our backgammon program in

defeating the World Champion is analyzed to show some aspects of the

method.

1 Int reduction

Problem solving research and examples usually deal with sequential

reasoning toward a conclusion or required response. For such

situations, criteria exist that make it possible to identify the correct

response and possibly order other responses with respect to their

goodness. However, in most domains such a paradigm is not possible

because the number of states in the domain is so large that it is next to

impossible to describe the properties of an arbitrary state with sufficient

accuracy to be able to reason about it. Expertise in such domains

appears to require judgment. We consider judgment to be the ability to

produce graded responses to small changes in the stimulus

environment. In judgment domains several responses may be

considered adequate, while reasoned decisions would appear to only be

correct or incorrect.

The ability to reliably judge small differences in chess positions is

what separates the top players from their nearest competitors. Even

though a decision procedure exists for determining whether one

position is better than another, it is intractable. It is this intractability or

the inability to isolate features that can be used in a clear reasoning

process that distinguishes the judgment domain from the reasoning

domain. The boundary between the two is certainly fuzzy, and

undoubtedly changes as new information about any particular domain

is developed. It seems that the larger the domain and the less precise

the methods of making comparisons between elements of the domain,

the less adequate are reasoning techniques.

2 The Problem

There are a number of techniques available to allow a program to

make comparisons, i.e. to discriminate good from bad from indifferent

in selecting among courses of action and among potential outcomes.

However, while these techniques are fine for doing simple comparisons,

most of them break down with even small additional complexity.

Consider the syllogism:

1) The more friends a person has, the happier he is.

2) John has more friends than Fred.

Therefore: John is happier than Fred.

So far so good. However, adding just a small amount of complexity

with the two additional propositions:

3) The more money a person has, the happier he is.

4) Fred has more money than John.

makes it possible to derive two contradictory conclusions from the

premises. This is a most unsatisfactory state of affairs. Especially so,

since recoding the premises into first order predicate calculus does not

help either. Neither will using productions or the branching logic of

programming languages. For such rcprcsentations, the most likely

formulation would be that X will be happier than Y #he is superior in

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33815-78-C-1551.

134

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved.

all applicable categories. Another formulation would have X happier

than Y if he is superior in a majority of categories (with a tie being
undefined). Such “voting” techniques can be shown to be deficient if

We further increase the complexity of the decision that is to be made.

If premises 2 and 4 were restated as:

2a) John has 25 friends and Fred has 20.

4a) Fred has $20,000 and John has $500.

Most people would agree that Fred was happier according to our

definitions of happiness. Yet, the only machinery available for coming

to grips with problems such as this in systems that reason is to produce

a large number of additional axioms that contain compound conditions,

or to define degrees of difference so that degrees of happiness can be

ascertained and summed.

The world of reasoning is a world of quantized perception and

action. These systems are discrete and do business on a “case” basis. In

order to achieve expertise it is necessary to react differentially to states

that were formerly considered equivalent. Thus, the number of distinct

perceptions and actions gets larger with expertise. This makes it more

expensive to find the applicable rule or pattern, and creates difficulty in

keeping new rules from interfering in unintended ways with the effects

of older rules. Further, the possibility that more than one pattern will

match grows as complexity grows, and default conditions are usually

defined for states that fail to match specific rules or patterns. This

makes adding new knowledge a formidable task for even moderate size

domains [3]. So unless, a method is found for automatically appending

viable rules to such a system, there seems to be a definite limit on the

expertise it can achieve.

Because it is easier to pay attention to only a few things at one time,

reasoning systems seem to have more of a sub-optimization nature than

is necessary in sequential problem solving. The need to solve the top

level goal can obscure the fact that it could possibly by solved later with

greater facility. For instance, a plan for taking a trip by car could

include:

1. Get suitcase

2. Pack clothes in suitcase

3. Put suitcase in car

If the raincoat is already in the car, this would involve getting it from

the car only to bring it back later inside the suitcase. Conceivably, it

would be simpler to bring the packed suitcase to the car and put the

raincoat inside it at that time. This shows that goals need not have an

immutable hierarchy. Further, there are times when achieving several

low level goals is more desirable than achieving the top level goal.

In addition to the above there is another problem that exists in

domains that interface to the real world, where sensed parameters that

have a quasi-continuous character may have to be quantized.

Premature quantization of variables loses information and can cause

problems when the variable is to be used later for making decisions.

For instance, if day/night is a binary variable and it is advantageous to

be in day, a program may arrange its problem solving behavior so that it

samples the environment just before day turns to night (by the system

definition), and, being satisfied with what it finds, pronounces this

branch of the solution search as favorable. If it had been forced to

continue the branch even a few steps, if would have come to a different

conclusion as night was closing in. However, quantization of the

relatively continuous day/night variable causes the blenrish effect [2], a

behavior anomaly similar to the horizon effect [l], but with the step size

of the variable rather than the fixed depth of the search being the

culprit. This problem can be prevented by retaining a variable in its

quasi-continuous state as long as possible. However, if a variable has a

very large range it is impractical to create tests for each value in the

range. Resorting to the testing of sub-ranges merely recreates the

problem. Thus, discrete treatment of such a variable can cause

problems, no matter how it is done.

3 A Better Way

Arithmetic functions can do all the above things easily and cheaply if

they are constructed in the right way. A polynomial of terms that

represent important features in the domain is constructed. We have

described our SNAC method of constructing such polynomials and

shown [2, 41 that:

e It is important that the values of terms vary smoothly.

o Non-linearity of terms is extremely important for expertise.

e Some method must exist for determining the degree to which
each feature is applicable in the present situation. This is done
with slowly varying variables that we call application coefficients.

The SNAC method also makes it possible to avoid the previously

vexing problem of getting stuck on a sub-optimal hill while

hill-climbing.

Figure 1 shows how getting stuck on a hill is avoided. With

non-linear functions, the peaks of hills can be rounded so that retaining

the peak becomes less desirable, especially if some other high ground is

in view of the searching process. Further, with application coefficients

it is possible to change the contour of the hill even as it is being

climbed. This is shown in a - c; the arrow showing the location of the

current state. As the hill is being climbed, one or more application

coefficients that sense the global environment cause the goal of

achieving the hilltop to become less important since it is very near being

135

' * 3 4 5 6 Black

Figure 1: Effect of SNAC on Hill Shape

achieved. The change in value of the application coefficients causes the

contour of the hill to begin to flatten, making the achievement of the

summit less desirable, and resulting in the program looking for the next

set of goals before even fully achieving the current set. Thus
application coefficients can direct progress by reducing the importance

of goals that are near being achieved, have already been achieved, or

arc no longer important.

The above is achieved mathematically as follows: The function

p + Y* = C* for -C 2 X 5 C and Y> 0 will produce a semi-circle similar

to Figure la. If we now change the function to be >+ A* p= Ce

where A 2 1 is an application coefficient (a variable), we can flatten the

semi-circle into a semi-elipse of arbitrary flatness. Here, let OLDX be

OLDX increases in value. The construction is finalized by only

recognizing values of A while OLDX is in the range of (say) -2C to

the hill would never seem a desirable thing to do because the program

could not tell the difference between getting there when it was far away

or already very close.

4 An Example of SNAC Sensitivity

The backgammon position in Figure 2 occurred in the Anal game of

the match in which my program, BKG 9.8, beat World Champion Luigi

Villa in July, 1979. In this position, BKG 9.8 had to play a $1. There

are four factors that must be considered here:

1. Black has established a strong defensive
points made on the 20 and 22 points.

backgame position with

2. In backgame positions timing is very important. Black is counting
on hitting White when he brings his men around and home. At
such time he must be prepared to contain the man sent back.
This can only be done if the rest of his army is not too far
advanced so it can form a containing pocket in front of the
sent-back man. At the moment Black would not mind having
additional men sent back in order to delay himself further and
improve his timing.

24 23 22 21 20 19 White 18 17 16 15 14 13

Figure 2: Black to Play a 5,l

3. There is also a possibility that Black could win by containing the
man that is already back, but this is rather slim since White can
escape with any 5 or 6. However, blockading this man is of some
value in case White rolls no 5’s or 6’s in the near future.

4. In case the sole White back man does not escape, there is a
possibility of bringing up the remainder of Black’smen not used
for the backgame and trying to win with an attack against the
back man.

In view of the above it is very difficult to determine the right move,

and none of the watching experts succeeded in finding it. The most

frequently mentioned move was 13-7, which brings a man into the

attack and hopes he is hit so as to gain timing (delay one’s inevitable

advance). However, BKG 9.8 made the better move of playing 13-8,

3-2, breaking up its blockade somewhat in order to get more attack, and

attempting to actively contain the White back man. It did not worry

about the increased chance of being hit, as this only helps with later

defense. This gives the program two chances to win: If the attack

succeeds, and by getting more men sent back, if the attack fails it

improves the likelihood of success of its backgame.

I have not seen this concept in this form before in books or games.

Humans tend to not want to break up the blockade that they have

painstakingly built up, even though it is now the least valuable asset

that Black has.

It is instructive to see how the program arrived at the judgment it

made; one that it had never been tested for. Black has 28 legal moves.

Ibe top choices of the program were (points of the Scoring pOlYnOmid

in parentheses): 13-8, 3-2 (687); 10-5, 3-2 (682); 13-8, 10-9 (672); and

136

13-7 (667). The third and fourth choices were the ones most frequently

mentioned by watching experts, thus showing they missed the idea of

breaking up the blockade; the thing common to the program’s top two

choices.

Let us see why it judged the move actually played as better than the

third choice (12-17, 15-16). The program considers many factors

(polynomial terms) in its judgments and quite a few of these are

non-linear. The six factors on which the two moves differed were

(points for each and difference in parentheses):

1. Containment of enemy man (177, 131, +46). The move made
does hinder his escape more. Containment is always desirable
unless one is far ahead and the end of the game is nearing.

2. Condition of our home board (96, 110, -14). It breaks up one
home board point. Breaking up the board (points 1 thru 6) is
never considered desirable.

3. Attack (37, 21, +16). It is the best attacking move. Attack is
desirable unless we are jeopardizing a sure win in the process.

4. Defensive situation (246,260, -14). The move slows White down,
thus could reduce the effectiveness of the backgame.

5. Long-term positional (-2, 11, -13). It puts a man on the 2 point,
which is undesirable when the game still has a long way to go
because it is too far%dvanced to be able to influence enemy men
from there.

6. Safety of men (-12, -4, -8). The move made is dangerous. The
program realizes this, but also understands that with a secure
defensive position such danger is not serious. However, all other
things being equal, it would prefer the least dangerous move

Thus the better containment and attack are consider-cd to be more

important than the weakening of the homcboard, the temporary

slowing down of White, the long-term positional weakness, and the

safety of the men. The difference between the first and second choice

was that in the first choice the attack is slightly stronger.

The importance of each of the above terms varies with the situation.

In the example, a backgame is established; else the safety term would

outweigh the attack term, and BKG 9.8 would not leave two blots in its

home board. It does recognize the degree of danger, however, and will

not make a more dangerous move unless it has compensating benefits.

This is typical of the influence that application coefficients exert in

getting a term to respond to the global situation.

5 Perspective

We have been employing the SNAC method of making judgments

for over two years now, and are struck with its simplicity and power.

The happiness example posed earlier is solved trivially in all its forms

with SNAC. If the above travel planning problem were solved as a

search problem using SNAC functions that measure the economy of

effort of the steps used, then undoubtedly SNAC would also do better

than sequential planning based on rules, with no evaluation of outcome

other than success or failure.

At the moment it is difficult to determine what role, if any, SNAC

like mechanisms have in human thinking. We have constructed them

to simulate lower level “intuitive” type of behavior, and they appear to

work admirably in capturing good judgment in the large domain of

backgammon. We conjecture that as variables become more and more

discrete in character and as criteria for success become more obvious,

reasoning gradually replaces such judgment making.

At present our backgammon program is being modified to be able to

interpret its own functions with the aim of being able to explain its

actions, and ultimately being able to identify its failures by type and

modifying the culprit functions.

111

PI

[31

[41

References

Berliner, H. J.
Some Necessary Conditions for a Master Chess Program.
In Third Inlernational Joinl Conference on Arlificial Intelligence,

pages 77-85. IJCAI, 1973.

Berliner, H.
On the Construction of Evaluation Functions for Large

Domains.
In Sixth International Joinr Conference on Arbjicial Intelligence,

pages 53-55. IJCAI, 1979.

Berliner, H.
Some Observations on Problem Solving.
In Proceeding of Ihe Third CSCSI Conference. Canadian Society

for Computational Studies of Intelligence, 1980.

Berliner, H. J.
Backgammon Computer Program beats World Champion.
Arlificial Intelligence 14(l), 1980.

137

