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Omega is a description system for knowledge embedding 
which combines mechanisms of the predicate calculus, 
type systems, and pattern matching systems. It can 
express arbitrary predicates (achieving the power of the 
o-order quantificational calculus), type declarations in 
programming systems (Algal, Simula, etc.), pattern 
matching languages (Planner, Merlin, KRL, etc.). 
Omega gains much of its power by unifying these 
mechanisms in a single formalism 

In this paper we present an axiomatization of basic 
constructs in Omega which serves as an important 
component of the interface between implementors and 
users+ 

Omega is based on a small number of primitive 
concepts. It is sufficiently powerful to be able to 
express its own rules of inference In this way Omega 
represents a self-describing system in which a great deal 
of knowledge about itself can be embedded. The 
techniques in Omega represent an important advance in 
the creation of self-describing systems without 
engendering the problems discovered by Russell 
Meta-descriptions (in the sense used in mathematical 
logic) are ordinary descriptions in Omega. 
Together with Jerry Barber we have constructed a 
preliminary implementation of Omega on the MLT. 
CADR System and used it in the development of an 
office workstation prototype. 

I -- Introduction 

First Order Logic is a powerful formalism for 
representing mathematical theories and formalizing 
hypotheses about the world. Logicians have developed a 
mathematical semantics in which a number of important 
results have been established such as completeness. 
These circumstances have motivated the development of 
deductive systems based on first order predicate calculus 
[FOL, PROLOG, Bledsoe’s Verifier, etc. ] However, 
First Order Logic is unsatisfactory as a language for 
embedding knowledge in computer systems. Therefore 
tnany recent reasoning system have tried to develop 
their own formalisms [PLANNER, FRL, KL-ONE, 
KRL, LMS, NETL, AMORD, XPRT, ETHERJ The 
semantics and deductive theory of these new systems 
however has not been satisfactorily developed. The only 
rigorous description of most of them has been their 
implementations which are rather large and convoluted 
programs. 

2 -- Overview 

The syntax of Omega is a version of template English, 
For example we use the indefinite article in instance 
descriptions such as the one below: 

(a Son) 

Instance descriptions like the previous one in general 
describe a whole category of objects, like the category 
of sons, in this example 
Such description however can be tnade more specific, by 
‘prescribing particular attributes for the instance 
‘description So for example, 

(a Son (With father Paul) (With mother Mary)) 

describes a son with father Paul and with mother Mary. 

Otnega differs from systems based on records with 
attached procedures (SIMULA and its descendants), 
generalized property lists (FRL, XRL, etc.), frames 
‘(Minsky), and units (KRL) in several important respects. 
One of the most important differences is that instance 
descriptions in Omega cannot be updated. This is a 
consequence of the monotonicity of knowledge 
accutnulation in Omega Change in Omega is modeled 
through the use of viewpoints [Barber: 19801 Another 
difference is that in Omega an instance description can 
have more than one attribution with the same relation, 
For example 

(a Human (with child Jack) (with child Jill)) 

is a description of a human with a child Jack and a 
child Jill 
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(John is (a Man)) 

can be deduced from the following statements 

(John is (a Son)) 

((a Son) is (a Man)) 

In order to aid readability we will freely mix infix and 
prefix notations. For example the statement 

(John is (a Man)) 

is completely equivalent to 
(is John (a Man)) 

3 -- Inheritance 

The inheritance relation in Omega differs somewhat 
from the usual ISA relation typically found in semantic 
networks. For example from 

(John iS (a Human)) 

((a Human) is (a Mammal)) 

(Human is (a Species)) 

we can deduce 

(John is (a Mammal)) 

but cannot conclude that (John is (a Species)). However 
we can deduce that 

(John is (a (a Species))) 

which says that John is something which is a species 

We can often avoid the use of explicit universal 
quantifiers. For instance the following sentence in 
quantificational calculus 

Vx Man(x) * Mortal(x) 

can be expressed as 

((a Man) is (a Mortal)) 

In this case we avoid the need to restrict the range of a 
universal quantifier by means of a predicate, as it is 
usually necessary in the quantificational calculus. When 
unrestricted quantification is required, or when we need 
to give a name to a description which occurs several 
times in the same expression, we denote a universally 
quantified variable by prefixing the symbol = to the 
name of the variable, wherever it appears in the 
statement, as in: 

(=x is (a Man)) * (=x is (a Mortal)) 

The scope of such a variable is the whole statement. 
Thus the above statement is an abbreviation for 

(for-a// =x ((=x is (a Man)) 3 (=x is (a Mortal)))) 

Occasionally it is necessary to use a for-all in the 
interior of a statement. For example in the following 
statement expresses the Axiom of Extensionality which is 
one of the most fundamental principles in Omega: 

((for-a// =d ((=d is =dr) * (=d is =d2))) 3 (=dl is =d2)) 

In the above statement, the scope of =dl and =d2 is the 
whole statetnent, while the scope of =d is only the 
statetnent ((=d is =dl) * (=d is =d2)). 

A form of existential quantification is implicit in the use 
of attributions+ For instance 

(Pat is (a Man (with father (an Irishman)))) 

says that there is an Irishman who is Pat’s father. 

Omega makes good use of the ability to place nontrivial 
descriptions on the left hand side of an inheritance 
relation. For example from the following statements 

(a Teacher (with subject =s)) iS (an Expert (W/f/l field ES)) 

(John is (a Teacher (With subject Music))) 

we get the following by transitivity of inheritance: 

(John iS (an Expert (Wifh field Music))) 

Note that statements like the following 
(is 

(and (a WarmBloodedAnimal) (a BearerOfLiveYoung)) 

(a Mammal)) 

are much more difficult to express in systems such as 
KRL and FRL which are based on generalized records 
and property lists. 

If it happens that two descriptions inherit from each 
other, we will say they are the same. For example if 

((a Woman) is (a Human (Wifh sex female))) 

((a Human (wifh sex female)) is (a Woman)) 

then we can conclude 

(a Woman) Same (a Human (wifh sex female)) 

We can express the general principle being used here in 
Omega as follows 
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((=dl same =d2) <=> (A f=dl is =d2) (=d2 is =dl))) 

4 -- Lattice Operators and Logical Operators 

The domain of descriptions constitutes a complemented 
lattice, with respect to the inheritance ordering is, meet 
and join operations and and or, complementation 
operation not, and Nothing and Something as the bottom 
and top respectively of the lattice Some axioms are 
required to express these relations For example all 
descriptions inherit from Something. 

(=d is Something) 

Furthermore Nothing is the complement of Something 

(Nothing same (not Something)) 

The usual logical operators on statements are A, V, -, => 
for conjunction, disjunction, negation, and implication 
respectively. The description operators not, and, or, etc. 
apply to all descriptions including statements. It is very 
important not to confuse the logical operators with the 
lattice operators in Omega. Note for example: 

((A true false) is false) 

((and true false) is /Vothingj 

((and true true) is true) 

Unfortunately most “knowledge representation languages” 
have not carefully distinguished between lattice operators 
and logical operators leading to a great deal of 
confusion. 

Note that a statement of the form (p is true) does not in 
general imply that (p same true). For example 

((Nixon iS (a UnindictedCoConspirator)) is true) 

(((a Price (with merchandise Tea) (with place China)) is 81) is true) 

does not imply 

(same 
(Nixon is (a UnindictedCoConspirator)) 

(a Price (with merchandise Tea) (with place China))) 

5 -- Basic Axioms 

We will state some of the axioms for the description 
system. The axioms for a theory are usually stated in a 
metalanguage of the theory. However, since our 
language contains its metalanguage, we can here give the 
axioms as ordinary statements in the description system 
itself. 

5.1 Extensionality 

Inheritance obeys an Axiom of Extensionality which is 
one of the most fundamental axioms of Omega. Many 
important properties can be derived from extensionality 
which can be expressed in Omega as follows: 

(W (=descriptionl iS =description2) 

(for-a// =d (=j 

(=d iS =descriptionl) 

(=d iS zdescription2)))) 

Note that the meaning of the above statement would be 
drastically changed if we simply omitted the universal 
quantifier as follows 

(W (=descriptionl iS =description2) 

(3 

(=d iS =descriptionl) 

(=d is =description2))) 

The axiom extensionality illustrates the utility of 
explicitly incorporating quantification in the language in 
contrast to some programming languages which claim to 
be based on logic. 

From this axiom alone we are able to derive most of 
the lattice-theoretic properties of descriptions. In 
particular we can deduce that is is a reflexive and 
transitive relation. The following 

(=description iS =description) 

expresses the reflexivity of inheritance whereas the 
following 

(4 
(A 

(=descriptionl /S =description2) 

(=description2 is =descriptions)) 

kdescriptionl is zdescriptiong)) 

expresses the transitivity of inheritance. 

5.2 Commutativity 

Commutativity says that the order in which attributions 
Of a concept are written is irrelevant We use the 
notation that an expression of the form XC..>> is a 
sequence of 0 or more elements 
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(same 
(a =descriptionl 

<<=attributionsl>> 

=attribution2 

<<=attributions3>> 

=attributionq 

<<=attributionsg>>) 

(a =descriptionl 

<<=attributionsl>> 

=attributionq 

<<=attributionsg>> 

=attribution2 

<<=attributionsg>>)) 

(Susan is (a Mother 

(with child Jim) 

(with father Bill) 

(with child (a Female)))) 

5.5 Monotonicity of Atributes 
Monotonicity of attributes is a fundamental property of 
instance descriptions which is close)y related to 
transitivity of inheritance. 

(=descriptionl is =description2) 

(is 
(a =concept (With =attribute =descriptionl)) 

(a =concept (With =attribute =descriptionp)))) 

For example 

((a Father (with child Henry) (With mother Martha)) same 
(a Father (with mother Martha) (with child Henry))) 

For example if 
5.3 Deletion 

(Fred is (an American)) 

(Bill is (a Person (with The axiom of Deletion is that attributions of an 
instance description can be deleted to produce a more 
general instance description. 
(is 

(a =descriptionl <<=attributions-l>> zattribution-2 <<=ettributiona-3 

(a =descriptionl <<=attributions-I>> <<=attributions-3)))) 

father Fred))) 

then 

(Bill is (a Person (With father (an kkTWkaI7~~~~ 

Note that the complementation in 
monotonic. For example 

Omega is not 

For example 

((a Bostonian) is (a NewEnglander)) (is 
(a Father 

(With child Henry) 

(With mother Martha)) 

(a Father (with mother Martha))) 

does not imply that 

((not (a Bostonian)) is (not (a NewEnglander))) 

5.6 Constraints 5.4 Merging 

Constraints can be used to restrict the objects 
will satisfy certain attributions. For example 

which One of the most fundamental axioms in Omega is 
Merging which says that attributions of the same 
concept can be merged. 

(a Human (withh?straint child (a Male))) 

describes humans who have 
Axiom for Constraints is 

only male children. The 
(=descriptionl is (a =description2 <<=attributions-l>>)) 

kdescriptionl is (a =description2 <<=attributions-2))))) 

(is 
=descriptionl 

(a =description2 <<=attributions-1>> <<=attributions-2))))) 

((a =C (withconstraint =R =dl) (with =R =d2)) is 
(a =C (with =R (and=dl =d2)))) 

If 
For example if 

(Joan is (a Human 

(WithConstraint child (a Male)) 

(With child Jean))) 
(Susan is (a Mother (with child Jim))) 

(Susan is (a Mother (with father Bill))) 

(Susan is (a Mother (With child (a Female)))) 
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then 6.2 Projective Relations 

(Joan iS (a Human (with child (SfK! (a Male) Jean)))) 

Note that solely from the statement 

(Ann iS (a Human (with child (a Male)) (With child Jean))) 

no important conclusions can be drawn in Omega. It 
entirely possible that Jean is a female with a brother. 

is 

We have found the constrained attributions in Omega to 
be useful generalizations of the increasingly popular 
“constraint languages” which propagate values through a 
network of property lists. 

If (2 is (a Complex (with real-part (> 0)))) and 
(2 iS (a Complex (With real-part (an Integer)))) then by 
merging it follows that 

(z iS (a Complex (With real-part (> 0)) (with real-part (an Integer)))). 

However in order to be able to conclude that 

(z iS (a Complex (With real-part (and (> 0) (an Integer))))) 

some additional information is needed. One very 
general way to provide this information is by 

(rsalgart iS (a Projective-relation (with concept Complex))) 

6 -- Higher Order Capabilities 
and by the statement 

In this section we present examples which illustrate 
power of the higher-order capabilities of Omega. 

the 

6.1 Transitive Relations 

If (3 is ($7 Integer (with larger 4))) and 
(4 is (an Integer (with larger 5))), we can conclude by 
monotonicity that 

(3 is (an Integer (With larger (an Integer (with larger 5))))) 

From the above statement, we would like to be able to 
conclude that (3 is (an Integer (with larger 5))). This goal 
can be accomplished by the statement 

(larger is (a Transitive-relation (with concept Integer))) 

which says that larger is a transitive relation for the 
concept Integer. 

The Axiom for Transitive Relations states that if R is a 
transitive relation for a concept c and x is an instance 
of c which is R-related to an instance of c which is 
R-related to m, then x is R-related to m. 

(=> (=R iS (a Transitive-relation (With concept =C))) 

(is 
(a =C (with =R (a =C (with =R =m)))) 

(a =C (with =R m)))) 

The desired conclusion can be reached by using the 
above description with c bound to Integer, R bound to 
larger, and m bound to 5. 

(=R k (a Projective-relation (with concept =C))) 

(is 
(a =C (with =R =d)) 

(a =C (wifhConsfrainf =R =d)))) 

The desired conclusion is reached by using the above 
description with =C bound to Complex, =R bound to 
real-part, =descriptionl bound to (> 01, and =description2 

bound to (an Integer). 

6.3 Inversion 

Inverting relations for efficiency of retrieval is a 
standard technique in data base organization. Inversion 
makes use of the converse of a relation with respect to 
a concept which satisfies the following Axiom for 
Converse: 

(=R same 
(a Converse 

(With relation (a Converse 

(with relation =R) 

(With concept =C))) 

(With concept =C))) 

The Axiom of Inversion expresses how to invert 
inheritance relations for constrained instance 
descriptions 

(<=> 

(=dl is (a =C (withConstraint =R (an =d2)))) 

((a =R (wifh (a Converse 

(with relation =R) 

(With relation =C) =dl)) is =d2))) 
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For example suppose 

((a Converse (with relation son) (with concept Person)) 

same Parent) 

we can conclude 

(Sally iS (a Person (wifhConsfrainf son (an American)))) 

if and only if 

((a Son (with parent Sally)) is (an American)) 

We have inversion to be a useful generalization of the 
generalized selection mechanisms in Simula, SmallTalk, 
and KRL as well as the generalized getprop mechanism 
in FRL. 

The interested reader might try to define the 
transitivity, projectivity, and converse relations in other 
“knowledge representation languages” 

7 -- Conclusions 

Omega encompasses ‘?he capabilities of both the w-order 
quantification calculus, type theory, and pattern 
matching languages in a unified way. We have 
illustrated how Omega is more powerful than First 
Order Logic by showing how it can directly express 
important properties of relations such as transitivity, 
projectivity, and converse that . are not first order 
definable 

Omega is based on a small number of primitive concepts 
including inheritance, instantiation, attribution, 
viewpoint, logical operations (conjunction, disjunction, 
negation, quantification, etc.) and lattice operations 
( meet, join, complement, etc.) It makes use of 
inheritance and attribution between descriptions to 
build a network of descriptions in which knowledge can 
be embedded. 

Omega is sufficiently powerful to be able to express its 
own rules of inference. In this way Omega represents a 
self-describing system in which a great deal of 
knowledge about itself can be embedded. Because of its 
expressive power, we have to be very careful in the 
axiom system for Omega in order to avoid Russell’s 
paradox. Omega uses mechanisms which combines ideas 
from the Lambda Calculus and Intutionistic Logic to 
avoid contradictions in the use of self reference 

We have found axiomatization to be a powerful 
technique in the development, design, and use of 
Omega Axiomatization has enabled us to evolve the 
design of Omega by removing many bugs which have 
shown up as undesirable consequences of the axioms. 
The axiomatization has acted as a contract between the 
implementors and users of the system. The axioms 
provide a succinct specification of the rules of inference 
that can be invoked. The development of Omega has 
focused on the goals of conceptual simplicity and power. 
The axiomatization of Omega in itself is a measure of 
our progress in achieving these goals. 

8 -- Related Work 

The intellectual roots of our description system go back 
to von Neumann-Bernays-Goedel set theory [Goedel: 
19401, the o-order quantificational calculus, and the 
lambda calculus. Its development has been influenced 
by the property lists of LISP, the pattern matching 
constructs in PLANNER-71 and its descendants QA-4, 
POPLER, CONNIVER, etc., the multiple descriptions 
and beta structures of .MERLIN, the class mechanism of 
SIMULA, the frame theory of Minsky, the packagers of 
PLAShlA, the stereotypes in [Hewitt: 19751, the tangled 
hierarchies of NETL, the attribute grammars of Knuth, 
the type system of CLU, the descriptive mechanisms of 
KRL-0, the partitioned semantic networks of [Fikes and 
Hendrix: 19771, the conceptual representations of 
[Yonezawa: 19771, the class mechanism of 
SMALL-TALK [Ingalls: 19781, the goblets of Knowledge 
Representation Semantics [Smith: 19781, the selector 
notation of BETA, the inheritance mechanism of OWL, 
the mathematical semantics of actors (Hewitt and 
Attardi: 19781, the type system in Edinburgh LCF, the 
XPRT system of Luc Steels, the constraints in [Borning: 
1977, 1979 and Steele and Sussman: 1978] 

9 -- Further Work 

We have also developed an Omega Machine (which is 
not described in this paper) that formalizes the 
operational semantics of Omega. 

Mike Brady has suggested that it might be possible to 
develop a denotational semantics for Omega along the 
lines of Scott’s model of the lambda calculus. This 
development is one possible approach to establishing the 
consistency of Omega. 
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