
KNOWLEDGE-BASED SIMULATION 

Philip Klahr and William S. Faught 
The Rand Corporation 

Santa Monica, California 90406 

ABSTRACT 

Knowledge engineering has been successfully 
applied in many domains to create knowledge-based 
"expert" systems. We have applied this technology 
to the area of large-scale simulation and have 
implemented ROSS, a Rule-Oriented Simulation 
System, that simulates military air battles. 
Alternative decision-making behaviors have been 
extracted from experts and encoded as object- 
oriented rules. Browsing of the knowledge and 
explanation of events occur at various levels of 
abstraction. 

I. INTRODUCTION - 

Large-scale simulators have been plagued with 
problems of intelligibility (hidden embedded 
assumptions, limited descriptive power), 
modifiability (behaviors and rules buried in code), 
credibility (minimal explanation facilities), and 
speed (slow to build, to run, to interpret). The 
area of large-scale simulation provides a rich 
environment for the application and development of 
artificial intelligence techniques, as well as for 
the discovery of new ones. 

The field of knowledge engineering [2] is 
developing tools for use in building intelligent 
knowledge-based expert systems. A human expert 
communicates his expertise about a particular 
domain in terms of simple English-like IF-THEN 
rules which are then incorporated into a computer- 
based expert system. The rules are understandable, 
modifiable, and self-documenting. Knowledge-based 
systems provide explanation facilities, efficient 
knowledge structuring and sharing, and interfaces 
that are amiable for system building and knowledge 
refinement. 

Our approach to simulation views a decision- 
based simulator as a knowledge-based system. The 
behaviors and interactions of objects, the 
decision-making rules, the communiciation channels 
are all pieces of knowledge that can be made 
explicit, understandable, modifiable, and can be 
used to explain simulation results. 

For our work in simulation, we chose the 
domain of military air battles. Current large- 
scale simulators in this domain exhibit exactly the 
simulation problems we discussed above and thus 
provide a good area in which to demonstrate the 
feasibility and potential of knowledge-based 
simulation. 

II KNOWLEDGE REPRESENTATION -- .--- - 

Our domain experts typically centered their 
discussions of military knowledge around the domain 
objects. For example, a particular type of 
aircraft has certain attributes associated with it 
such as maximum velocity, altitude ranges, time 
needed to refuel, etc. Similarly, individual 
planes have given positions, speeds, altitudes, 
routes, etc. In addition, experts defined the 
behaviors of objects relative to object types or 
catagories. For example, they defined what actions 
aircraft take when they enter radar coverages, what 
ground radars do when they detect new aircraft (who 
they notify, what they communicate), etc. It 
became clear that an object-oriented (Simula-like 
[l]) programming language would provide a natural 
environment in which to encode such descriptions. 

We chose Director [6] for our initial 
programming language. Director is an object- 
oriented message-passing system that has been used 
primarily for computer graphics and animation. It 
offered considerable promise for our use in 
simulation, both in how knowledge is structured and 
how it is executed. Each object (class or 
individual) has its own data base containing its 
properties and behaviors. Objects are defined and 
organized hierarchically, allowing knowledge to be 
inherited, i.e., offsprings of objects 
automatically assume (unless otherwise modified) 
the properties and behaviors of their parents. 

In Director, as in other message-passing 
systems (e.g., Smalltalk [3] and Plasma [5]), 
objects communicate with each other by sending 
messages. The Director format for defining 
behaviors is 

(ask <object> do when receiving <message-pattern> 
<actions>), 

i.e., when the object receives a message matching 
the pattern, it performs the associated actions. 
In ROSS, we have added the capability of specifying 
IF-THEN rules of the form 

(IF <conditions> THEN <actions> ELSE <actions>) 

as part of an object's behavior. The conditions 
typically test for values (numeric, boolean) of 
data items while actions change data items or send 
messages to objects. Since Director is written in 
Maclisp, one may insert any Lisp s-expression as a 
condition or action. The following behavioral rule 
contains all of these options: 

181 

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved. 



(ask RADAR do when receiving (IN RADAR RANGE ?AC) 
(SCRIPT 
(IF 
(lessp 
(length (ask MYSELF recall your OBJECTS-IN-RANGE)) 
(ask MYSELF recall your CAPACITY)) 

THEN 
(ask 
(ask 

(ask 

(ask 
ELSE 
(ask 

>>I 

HISTORIAN at ,STIME MYSELF detects ,AC) 
MYSELF add ,AC to your list of 

OBJECTS-IN-RANGE) 
,(ask MYSELF recall your SUPERIOR) 

MYSELF detects ,AC) 
MYSELF monitor ,AC while in coverage) 

HISTORIAN at ,STIME MYSELF doesn't detect ,AC) 

This rule is activated when a radar receives a 
message that an aircraft (AC) is in its radar 
range. The radar tests whether the number of 
objects currently in its radar coverage is less 
that its capacity. If its capacity is not full, 
then the radar tells the historian that it detects 
the aircraft at time STIME (the current simulation 
time), it records the aircraft in its log, it 
notifies its superior that it detected the 
aircraft, and it continues to monitor the aircraft 
through its radar coverage. 

III -* BEHAVIORAL DESCRIPTIONS 

A difficult problem with large-scale 
simulators is that they contain complex behaviors 
that are hard to describe and understand. Each 
object has many potential actions it can take, and 
there may be hundreds of objects whose behavior the 
user may wish to examine and summarize at differing 
levels of generality and detail. To alleviate this 
problem, we organized the simulator's behavioral 
descriptions along two lines: 

1. Static descriptions: descriptions of the 
major events simulated and the rules governing 
each object's potential actions. The events and 
rules are organized so that users can quickly 
peruse and understand the knowledge. 

2. Dynamic descriptions: descriptions of each 
object's behavior as the simulator runs. Events 
are organized so the user is not overwhelmed by 
a mass of event reports. Events are reported as 
patterns with detail eliminated and selected 
events highlighted. 

To organize the descriptions, we constructed 
scenarios representing sequential event chains. 
Each major event in ROSS has an associated llevent 
descriptor" (ED). EDs are collected into chains, 
where each chain is a linear list of EDs. Each ED 
is causally associated with its immediate neighbors 
in the list: a preceding ED is necessary to cause 
its successor in that chain, but not necessarily 
sufficient. ([7] discusses the use of such chains 
in constructing proofs.) 

ED chains are further organized into 
Ilactivities," e.g., radar detection of an aircraft. 
Each activity is a tree of EDs. The root of the 

tree corresponds to the event that starts the 
activity. Each path from the root to a leaf is an 
ED chain. Logically, each ED chain corresponds to 
one possible scenario of events that could occur in 
a simulation. The scenario structure is used for 
both static and dynamic behavior descriptions. 

!!* BROWSING KNOWLEDGE 

Static behavior descriptions are given by 
ROSS's "browse" function, an on-line interactive 
facility with which users can examine ROSS's 
knowledge base. The user is initially given a list 
of all activities. He then selects an activity, 
and the browse function prints a list of the names 
of all EDs in that activity. The user can ask for 
a more complete description, in which case the 
browse function prints a tree of the EDs. The user 
can then select a particular ED to examine, and the 
browse function prints a simplified description of 
the event. If the user asks for a more complete 
description, the browse function prints the actual 
code for the corresponding behavior (as in the 
example above). At any point the user can select 
the next ED, or go up or down activity/event 
levels. 

The composition of ED chains, i.e., which EDs 
are members of which chains, is selected by the 
system developers for "naturalness" or appeal to a 
user's intuitive structure of the simulator. The 
system itself constructs the actual ED chains from 
the simulator's source code and a list of start and 
end points for each chain. The facility appears to 
be quite useful in our domain where the objects 
have interdependent yet self-determined behavior. 

B. EVENT REPORTING -- 

ROSS contains several objects that have been 
defined to organize, select, and report events to 
users. The Historian receives event reports from 
other objects (as exemplified in the behavioral 
rule above) and, upon request, supplies a history 
of any particular object, i.e., a list of events 
involving the object up to the current simulation 
time. The Historian also sends event reports to 
the Reporter, who selectively reports events to the 
user on his terminal as the simulator is running. 
The user can request to see all reports or only 
those involving a particular object or objects of a 
particular class. In addition, a Statistician 
accumulates statistics about particular fixed 
events (e.g., the total number of radar 
detections). 

(We have also interfaced ROSS to a color 
graphics system which visually displays simulation 
runs. The graphics facility has been an 
indispensable tool for understanding ROSS and the 
simulations it produces and for debugging.) 

C. EXPLANATION USING SCENARIOS - 

To explain "why" certain results occur, 
traditional rule-based systems typically show the 

182 



rules that were used, one by one, backchaining from 
the conclusions. We have taken a different 
approach to explanation in ROSS. Rather than 
displaying individual rules to explain events, ROSS 
presents higher-level behavioral descriptions of 
what happened, akin to the activity and event 
descriptions used for browsing. 

It is often the case that an event occurring 
in a simulaton run can be explained by specifying 
the chain of events leading up to the current 
event. This is accomplished simply by comparing 
event histories (gathered by the Historian) to the 
ED trees described above. The user can then browse 
the events and activities specified to obtain the 
applicable rules. 

What is perhaps more interesting in simulation 
is explaining why certain events do not occur. 
Often times simulations are run with expectations 
and the user is particularly interested in those 
cases where the expectations are violated. ([41 
describes how such expectations can be used to 
drive a learning mechanism.) We have developed an 
initial capability for such "expectation-based" 
explanation. 

Explanations are given relative to specified 
ED chains. One event chain is designated as the 
"expected" chain. An "analyzer" reports deviations 
from this chain, i.e., it determines the point 
(event) at which the ED chain no lcnger matches the 
simulation events. Typical responses from the 
analyzer are: aircraft in radar range but not 
detected; radar sent message to superior but it was 
not received; command center requested aircraft 
assignment but none available. Such analysis can 
occur at any time within a simulation run to 
determine the current status of expected event 
chains. 

It is important to note that expectations need 
not be specifed prior to a simulation run (although 
this could focus the simulator's reporting 
activity). Users can analyze events with respect 
to any number of existing scenarios. Each analysis 
provides a simplified description and explanation 
of the simulator's operation from a different point 
of view (e.g., from radar's view, from aircraft's 
view, from a decision maker's view). This feature 
has also been extremely useful in debugging ROSS's 
knowledge base. 

IV* ---- SUMMARY AND FUTURE RESEARCH - 

ROSS currently embodies approximately 75 
behavioral rules, 10 object types, and has been run 
with up to 250 individual objects. To show ROSS's 
flexibility, we have developed a set of alternative 
rule sets which encompass various strategies and 
tactics. Simulation runs using alternative rules 
show quite different behaviors and results. 

Future research will include scaling ROSS up 
both in complexity and in numbers of objects. Our 
goal is to turn ROSS into a realistic, usable tool. 
A more user-oriented English-like rule-based 
language will be required for users to express 

behaviors and strategies. We are looking toward 
ROSIE PI, or a hybrid ROSIE object-oriented 
language for this purpose. 

Scaling-up will necessitate enhancements in 
speed. We plan to explore parallel processing, 
abstraction (e.g., aggregating objects, adaptive 
precision), sampling, and focusing on user queries 
to avoid irrelevant processing. 

In summary, we have applied knowledge 
engineering to large-scale simulation and 
implemented ROSS, an interactive knowledge-based 
system that simulates the interactions, 
communications, and decision-making behavior within 
the domain of military air battles and command and 
control. We have shown the feasibility and payoff 
of this approach and hope to apply it to other 
domains in the future. 

ACKNOWLEDGMENTS 

We wish to thank Ed Feigenbaum, Rick Hayes-Roth, 
Ken Kahn, Alan Kay, Doug Lenat, Gary Martins, Raj 
Reddy, and Stan Rosenschein for their helpful 
discussions and suggestions during ROSS's 
development. We thank our domain experts Walter 
Matyskiela and Carolyn Huber for their continuing 
help and patience, and William Giarla and Dan 
Gorlin for their work on graphics and event 
reporting. 

REFERENCES 

1. Dahl, O-J. and Nygaard, K. Simula -- an 
Algol-based simulation language. Communications 
ACM, 9 (9), 1966, 671-678. 

2. Feigenbaum, E. A. The art of artificial 
intelligence: themes and case studies in knowledge 
engineering. Proc. IJCAI-77, MIT, 1977, 1014-1049. - -- 

3. Goldberg, A. and Kay, A. Smalltalk- 
Instruction Manual, SSL 76-6, Xerox Palo Alto 
Research Center, 1976. 

4. Hayes-Roth, F., Klahr, P., and Mostow, D. J. 
Knowledge acquisition, knowledge programming, and 
knowledge refinement. R-2540-NSF, Rand 
Corporation, Santa Monica, 1980. 

5. Hewitt, C. Viewing control structures as 
patterns of passing messages. Artificial 
Intelligence, 8 (3), 1977, 323-364. 

6. Kahn, K. M. Director Guide, AI Memo 482B, 
Arti .ficial Intel1 .igence Lab, MIT, 1979. 

7. Klahr, P. Planning techniques for rule 
selection in deductive question-answering. In 
Pattern-Directed Inference Systems, D. A. Waterman -____ 
and F. Hayes-Roth (Eds.), Academic Press, New York, 
1978, 223-239. 

8. Waterman, D. A., Anderson, R. H., Hayes-Roth, 
F Klahr, P., Martins, G., and Rosenschein S. J. 
DeAign of a rule-oriented system for impleienting 
expertise. N-1158-l-ARPA, Rand Corporation, Santa 
Monica, 1979. 

183 


