
I NTERACTI VE FRAME I NSTANTIATION

Carl Engelman
Ethan A. Scar1
Charles H. Berg*

ABSTRACT

This paper discusses the requirements that
interactive frame instantiation imposes on
constraint Verification. The representations and
algorithms of an implemented software solution
are presented.
INTRODUCTION

A number of frame representation languages
or data access packages, seven of which are
discussed in [STEFIK], have been developed as
LISP extensions. In most applications of these
languages, frame instantiation -- the creation of
a new frame which represents an "instance", i.e.,
a more specific example, of a given "generic"
frame -- occurs as a major theme. Yet, these
languages do not really provide control
structures sufficient to support interactive
frame instantiation.

Most of this paper will be concerned with
constraint verification. A frame representation
language typically provides the programmer with a
way of attaching a constraint as a "facet" Of a
given slot. It will reject any proposed values
for the slot which fail that constraint,
screaming a bit to the user. Such constraints
attached to a slot in some generic frame also
obtain automatically for slots of the same name
occurring within its progeny. That is, they are
"inherited". And that's about it. To explain
why we felt the need for more control of
constraint verification and, in fact, of the
whole dynamics of interactive frame
instantiation, we must present just a bit of our
application.

THE APPLICATION

The KNOBS project [ENGELMAN] is directed
towards the development of experimental
consultant systems for tactical air command and
control. We chose to focus first on what seemed
to be a very simple type of aid. Imagine an Air
Force officer is trying to plan a mission to
strike some particular target. We are providing
a program which interactively accepts the target,
the airbase from which to fly the mission, the
type of plane, the time of take-off, etc., and
checks the input for inconsistencies and
oversights. Such missions are stereotypes which

itCurrent affiliation, AUTOMATIX Inc.

The MITRE Corporation
P.O.Box 208
Bedford, MA 01730

are represented naturally as frames and the
checks are constraints among the possible slot
values in such frames.

DATA BASE/LANGUAGE SETTING

k

We first translated FRL [ROBERTSJULY]
ROBERTSSEPT) f rom MACLISP to INTERLISP
ERICSON]. Data bases of targets and resources
ave been implemented as nets of individual and

generic frames. An individual target frame, for
example, contains information, e.g., location,
specific to a particular target, while a generic
target frame contains information true about
classes of targets, for instance, the type of
radar normally associated with a particular kind
of surface-to-air missile. In all, the data base
currently contains some 1400 frames.

We have introduced several upwards
compatible extensions to FRL, e.g., programmer
controlled parallel inheritance along paths
defined by a specified set of slot names and the
controlled automatic invocation of "$IF-NEEDED"
procedures during attempts to retrieve missing
data. We split the concept of generic frame:
those which we continue to refer to as "generic
frames" contain information (defaults, attached
demons, etc.) applicable to all their instances.
Their slots are not necessarily in correspondence
with those of their instances. What we refer to
as a "template", on the other hand, is a
prototypical representation of an instance of the
associated generic frame. Its slots correspond
to those to be found in an instance, but contain
"$IF-NEEDED" procedures where the instance would
contain values. It also contains constraints on
the values that may appear in an instantiation.

We also differentiate frames representing
fully specified objects from those representing
subclasses. The former is referred to as
"instance"
call it

in [sTEFIK] and [SZOLOVITS], and we
"individual". Such a frame is identified

by having an "AIO" (An-Individual-Of) slot
pointing back to its generic frame. AI0
corresponds to set membership, while AK0
(A-Kind-Of) corresponds to set inclusion. While
the frame instantiation procedures are designed
for use at any level, we have thus far employed
them only in the creation of individual frames.

DESIDERATA
Our goal is a demonstration which, like a

good shortstop, makes it look easy. Some
requirements are:

184

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved.

1. The system must know what information is
Constraints

needed and how-to ask for it. It must also know
when the instantiation is complete and what to do
then.

2. The user must be able to enter a value
for'any slot in any frame at any time and the
system must know what must be checked or
rechecked and what remains to be done.

3. There should be a general facility to
suggest choices for a slot which are consistent
with the current values of the other slots.

4. The system should complain as soon as
the slot values become inconsistent. It must
show dynamic discretion in explaining enough, but
not too much, of the difficulty.

5. The user must be able to ask questions
about the data base and about the status of the
instantiation.

The form of a constraint is: (name domain
expr), where "name" is an atom used to index a
user-oriented explanation of the constraint,
"domain" (the terminology is suggested in
{STANSFIELD]) is the list of slot names whose
interrelations are tested by the constraint, and
"expr" is a predicate to be satisfied. "Expr"
can refer to the current values of slots being
instantiated simply by reference to their slot
names. We define a bucket as an unordered list
of constraints. The contents of the CONSTRAINTS
slot in the template is a list of buckets,
ordered to express priority. All constraints in
the same bucket are of equal priority. The
attachment of constraints to the template at the
slot level, rather than the usual attachment to
slots at the facet level, reflects our view that
all the action is in the interaction of the slots
and that it is presumptive to make a decision --
especially a static one -- as to which slot is
"bad".

6. The instantiation of one frame must be
able to initiate the instantiation of another.

7. Constraint satisfaction must be
maintained after the original instantiation
whenever a slot value is changed or a template is
changed.

EXECUTION

Assuming a sequence of values is being
suggested for the instantiated slots, the
algorithm is as follows:

Initially all constraints are unmarked.

REPRESENTATION

Templates

Templates are represented by frames with
slots whose names will be replicated in the
instantiated frames and which contain either
$IF-NEEDED or $VALUE facets. The $IF-NEEDED
procedures are responsible for deciding whether
the value can be computed or is to be requested
from the user. It is our normal practice to have
the $IF-NEEDED procedures also perform type
checking. The presence of a SVALDE facet causes
a recursive call to the instantiator.

The template also contains two special
slots, named CONSTRAINTS (discussed below) and
BOOKEEEP. The BOOKKEEP slot contains procedures
to be run upon completion of the frame
instantiation, a sort of "IF-ADDED" mechanism at
the frame level. The interpreter either steps
through the template filling slots or fills those
commanded by the user. Moreover, the user may
interact at any time wi th LISP or with a natural
language Q/A system for retrieving facts from the
data base, including those inferred through
"inheritance". The latter is implemented as an
ATN parser, whose syntax and semantics are
intimately related to the structure of the frame
net. In add ition, there are a number of
amenities: spelling correctors, synonym and word
truncation recognizers, and facilities for
viewing the current status of the instantiation
process
values,

i.e. , a presentation of the current slot
disti nguishing with explanation those

At any time, there is a current slot name,
the one for which a value has been most recently
proposed. A constraint is considered timely if
its domain includes the current slot name and if
all the other slot names in its domain have
values already assigned. The interpreter passes
through the buckets in decreasing priority until
it discovers a timely constraint. If the
constraint fails, the interpreter marks the
constraint and traps the slots in its domain,
i.e., renders their values unknown to constraints
in lower priority buckets, which are not tested.
If these lower priority constraints are already
marked, they become unmarked since they are no
longer timely. Other failed constraints in the
current bucket are marked and their domains
trapped. If a previously marked constraint now
succeeds, then it is unmarked. If all the
constraints in a bucket having a given slot name
become unmarked, the slot name is released, i.e.,
pushed down to lower priority buckets along with
the current slot name. The process normally
terminates when all the slots are filled and none
of the constraints are marked.

CONSISTENCY MAINTENANCE

Should a slot value in an instantiated frame
or a constraint in a template be changed, the
system makes appropriate checks.

COMPLEX CONSTRAINTS

The discussion above deals with constraints
on the related slots in a given frame. Such
constraints are called simple in [STANSFIELD].
What he calls complex constraints, those

which violate constraints.

185

involving slots in ditrerent frames, are of great
importance to us. For example, we must be
concerned with the timing constraints needed to
synchronize a primary mission with its support
missions (refueling, defense suppression, etc.).
We are currently engaged in the design and
implementation of suitable representations and
algorithms. We believe that a purely recursive
(depth first) sequence of frame instantiations is
not acceptable, and that we shall have to provide
flexible control of interleaved
"co-instantiations".

CHOICE GENERATION

When cueing the user for a slot-value, we
would often like to present a list of values
consistent with those already chosen for other
slots. This is, in general, computationally
impossible. It turns out, however, to be in the
nature of our application that we frequently can
produce a list of consistent values.
Furthermore, we can do this by a fairly general
method, generating the choices, in fact, from the
constraints. The key point -- and this is
obviously application dependent -- is that many
of our constraints are of the form
(name (A Bl -- Bn) (MEMBER A (f00 Bl -- Bn))),
where, if the code is to make sense, (foo Bl -- Bn)
is a computable, finite list. So, for example, one
constraint might mean:

(1) The airbase is one of our airbases in
Europe.

and another might mean:

the
(2) The chosen

chosen airbase.
fighter wing is located at

We sav a constraint enumerates a slot. S.
+ I I

absolutely iff it is of the form:
(name (S)(MEMBER S----)). Constraint (l), above,
enumerates airbases absolutely. A constraint

To make choice generation more efficient, we
optimize the constraints within the current
context by collecting those which are timely and
"compiling" them into a function of only the
current slot, essentially by pre-evaluating all
subexpressions which do not contain this slot.

CRITICISM AND FUTURE DIRECTIONS

1) We need to design and implement a
comparable system for the complex constraints.

2) The only relative priorities we can
express between constraints are static. This
might, someday, prove inadequate.

3) There is danger of an existential trap.
The simplest example occurs when the first slot
filled is A and the candidates value satisfies
every constraint whose domain is (A). There may,
however, be a constraint whose domain is (A B)
which cannot be satisfied with the proposed value
of A and any value of B. Our interpreter does
not see this until B is selected. The choice
generation scheme discussed above could also be
employed to test (perhaps very expensively), for
such traps.

ACKNOWLEDGEMENTS

This work was supported by the Rome Air
Development Center under Air Force contract
F19628-80-C-0001.

The FRL system was originally created at MIT
by R. Bruce Roberts and Ira P. Goldstein.
Roberts assisted us by defining and creating an
"export nucleus" of FRL. The work reported here
is built directly on the INTERLISP version of FRL
translated and extended by Lars W. Ericson, while
he was at MITRE. We are deeply indebted to him.

REFERENCES
LENGELMAN] Engelman, C., Berg, Charles H., and
Bischoff, Miriam, "KNOBS: An Experimental
Knowledge Based Tactical Air Mission Planning
System and a Rule Based Aircraft Identification
Simulation Facility", Proc. Sixth Inter. Joint
Conf. Artificial Intelligence, Tokyo, 1979, pp.
247-249.

[ERICSON] Ericson, Lars W., "Translation of
Programs from MACLISP to INTERLISP", MTR-3874,
The MITRE Corporation9 Bedford, MA, Nov. 1979.

[ROBERTSJULY] Roberts, R. Bruce, and Goldstein,
Ira P., "The FRL Primer", MIT AI Lab. Memo 408,
July 1977.

[ROBERTSSEPT) Roberts, R. Bruce, and Goldstein,
Ira P., "The FRL Manual", MIT AI Lab. Memo 409,
September 1977.

[STANSFIELD] Stansfield, James L., "Developing
Support Systems for Information Analysis", in
Artificial Intelligence, An MIT Perspective,
Winston, P. H., and Brown, R. H., (Eds.), The MIT
Press, Cambridge, MA, 1979.

[STEFIK] Stefik, Mark, "An Examination of a
Frame-Structured System", Proc. Sixth Inter.
Joint Conf. on Artificial Intelligence, Tokyo,
1979, pp. 845-852.

[SZOLOVITS] Szolovits, P., Hawkinson, L. B.,
Martin, W. A., "An Overview of Owl, A Language
for Knowledge Representation", MIT/LCS/TM-86,
MIT, Cambridge, MA, June, 1977.

186

