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ABSTRACT 

This paper discusses the requirements that 
interactive frame instantiation imposes on 
constraint Verification. The representations and 
algorithms of an implemented software solution 
are presented. 
INTRODUCTION 

A number of frame representation languages 
or data access packages, seven of which are 
discussed in [STEFIK], have been developed as 
LISP extensions. In most applications of these 
languages, frame instantiation -- the creation of 
a new frame which represents an "instance", i.e., 
a more specific example, of a given "generic" 
frame -- occurs as a major theme. Yet, these 
languages do not really provide control 
structures sufficient to support interactive 
frame instantiation. 

Most of this paper will be concerned with 
constraint verification. A frame representation 
language typically provides the programmer with a 
way of attaching a constraint as a "facet" Of a 
given slot. It will reject any proposed values 
for the slot which fail that constraint, 
screaming a bit to the user. Such constraints 
attached to a slot in some generic frame also 
obtain automatically for slots of the same name 
occurring within its progeny. That is, they are 
"inherited". And that's about it. To explain 
why we felt the need for more control of 
constraint verification and, in fact, of the 
whole dynamics of interactive frame 
instantiation, we must present just a bit of our 
application. 

THE APPLICATION 

The KNOBS project [ENGELMAN] is directed 
towards the development of experimental 
consultant systems for tactical air command and 
control. We chose to focus first on what seemed 
to be a very simple type of aid. Imagine an Air 
Force officer is trying to plan a mission to 
strike some particular target. We are providing 
a program which interactively accepts the target, 
the airbase from which to fly the mission, the 
type of plane, the time of take-off, etc., and 
checks the input for inconsistencies and 
oversights. Such missions are stereotypes which 
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are represented naturally as frames and the 
checks are constraints among the possible slot 
values in such frames. 

DATA BASE/LANGUAGE SETTING 

k 

We first translated FRL [ROBERTSJULY] 
ROBERTSSEPT) f rom MACLISP to INTERLISP 
ERICSON]. Data bases of targets and resources 
ave been implemented as nets of individual and 

generic frames. An individual target frame, for 
example, contains information, e.g., location, 
specific to a particular target, while a generic 
target frame contains information true about 
classes of targets, for instance, the type of 
radar normally associated with a particular kind 
of surface-to-air missile. In all, the data base 
currently contains some 1400 frames. 

We have introduced several upwards 
compatible extensions to FRL, e.g., programmer 
controlled parallel inheritance along paths 
defined by a specified set of slot names and the 
controlled automatic invocation of "$IF-NEEDED" 
procedures during attempts to retrieve missing 
data. We split the concept of generic frame: 
those which we continue to refer to as "generic 
frames" contain information (defaults, attached 
demons, etc.) applicable to all their instances. 
Their slots are not necessarily in correspondence 
with those of their instances. What we refer to 
as a "template", on the other hand, is a 
prototypical representation of an instance of the 
associated generic frame. Its slots correspond 
to those to be found in an instance, but contain 
"$IF-NEEDED" procedures where the instance would 
contain values. It also contains constraints on 
the values that may appear in an instantiation. 

We also differentiate frames representing 
fully specified objects from those representing 
subclasses. The former is referred to as 
"instance" 
call it 

in [sTEFIK] and [SZOLOVITS], and we 
"individual". Such a frame is identified 

by having an "AIO" (An-Individual-Of) slot 
pointing back to its generic frame. AI0 
corresponds to set membership, while AK0 
(A-Kind-Of) corresponds to set inclusion. While 
the frame instantiation procedures are designed 
for use at any level, we have thus far employed 
them only in the creation of individual frames. 

DESIDERATA 
Our goal is a demonstration which, like a 

good shortstop, makes it look easy. Some 
requirements are: 
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1. The system must know what information is 
Constraints 

needed and how-to ask for it. It must also know 
when the instantiation is complete and what to do 
then. 

2. The user must be able to enter a value 
for'any slot in any frame at any time and the 
system must know what must be checked or 
rechecked and what remains to be done. 

3. There should be a general facility to 
suggest choices for a slot which are consistent 
with the current values of the other slots. 

4. The system should complain as soon as 
the slot values become inconsistent. It must 
show dynamic discretion in explaining enough, but 
not too much, of the difficulty. 

5. The user must be able to ask questions 
about the data base and about the status of the 
instantiation. 

The form of a constraint is: (name domain 
expr), where "name" is an atom used to index a 
user-oriented explanation of the constraint, 
"domain" (the terminology is suggested in 
{STANSFIELD]) is the list of slot names whose 
interrelations are tested by the constraint, and 
"expr" is a predicate to be satisfied. "Expr" 
can refer to the current values of slots being 
instantiated simply by reference to their slot 
names. We define a bucket as an unordered list 
of constraints. The contents of the CONSTRAINTS 
slot in the template is a list of buckets, 
ordered to express priority. All constraints in 
the same bucket are of equal priority. The 
attachment of constraints to the template at the 
slot level, rather than the usual attachment to 
slots at the facet level, reflects our view that 
all the action is in the interaction of the slots 
and that it is presumptive to make a decision -- 
especially a static one -- as to which slot is 
"bad". 

6. The instantiation of one frame must be 
able to initiate the instantiation of another. 

7. Constraint satisfaction must be 
maintained after the original instantiation 
whenever a slot value is changed or a template is 
changed. 

EXECUTION 

Assuming a sequence of values is being 
suggested for the instantiated slots, the 
algorithm is as follows: 

Initially all constraints are unmarked. 

REPRESENTATION 

Templates 

Templates are represented by frames with 
slots whose names will be replicated in the 
instantiated frames and which contain either 
$IF-NEEDED or $VALUE facets. The $IF-NEEDED 
procedures are responsible for deciding whether 
the value can be computed or is to be requested 
from the user. It is our normal practice to have 
the $IF-NEEDED procedures also perform type 
checking. The presence of a SVALDE facet causes 
a recursive call to the instantiator. 

The template also contains two special 
slots, named CONSTRAINTS (discussed below) and 
BOOKEEEP. The BOOKKEEP slot contains procedures 
to be run upon completion of the frame 
instantiation, a sort of "IF-ADDED" mechanism at 
the frame level. The interpreter either steps 
through the template filling slots or fills those 
commanded by the user. Moreover, the user may 
interact at any time wi th LISP or with a natural 
language Q/A system for retrieving facts from the 
data base, including those inferred through 
"inheritance". The latter is implemented as an 
ATN parser, whose syntax and semantics are 
intimately related to the structure of the frame 
net. In add ition, there are a number of 
amenities: spelling correctors, synonym and word 
truncation recognizers, and facilities for 
viewing the current status of the instantiation 
process 
values, 

i.e. , a presentation of the current slot 
disti nguishing with explanation those 

At any time, there is a current slot name, 
the one for which a value has been most recently 
proposed. A constraint is considered timely if 
its domain includes the current slot name and if 
all the other slot names in its domain have 
values already assigned. The interpreter passes 
through the buckets in decreasing priority until 
it discovers a timely constraint. If the 
constraint fails, the interpreter marks the 
constraint and traps the slots in its domain, 
i.e., renders their values unknown to constraints 
in lower priority buckets, which are not tested. 
If these lower priority constraints are already 
marked, they become unmarked since they are no 
longer timely. Other failed constraints in the 
current bucket are marked and their domains 
trapped. If a previously marked constraint now 
succeeds, then it is unmarked. If all the 
constraints in a bucket having a given slot name 
become unmarked, the slot name is released, i.e., 
pushed down to lower priority buckets along with 
the current slot name. The process normally 
terminates when all the slots are filled and none 
of the constraints are marked. 

CONSISTENCY MAINTENANCE 

Should a slot value in an instantiated frame 
or a constraint in a template be changed, the 
system makes appropriate checks. 

COMPLEX CONSTRAINTS 

The discussion above deals with constraints 
on the related slots in a given frame. Such 
constraints are called simple in [STANSFIELD]. 
What he calls complex constraints, those 

which violate constraints. 
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involving slots in ditrerent frames, are of great 
importance to us. For example, we must be 
concerned with the timing constraints needed to 
synchronize a primary mission with its support 
missions (refueling, defense suppression, etc.). 
We are currently engaged in the design and 
implementation of suitable representations and 
algorithms. We believe that a purely recursive 
(depth first) sequence of frame instantiations is 
not acceptable, and that we shall have to provide 
flexible control of interleaved 
"co-instantiations". 

CHOICE GENERATION 

When cueing the user for a slot-value, we 
would often like to present a list of values 
consistent with those already chosen for other 
slots. This is, in general, computationally 
impossible. It turns out, however, to be in the 
nature of our application that we frequently can 
produce a list of consistent values. 
Furthermore, we can do this by a fairly general 
method, generating the choices, in fact, from the 
constraints. The key point -- and this is 
obviously application dependent -- is that many 
of our constraints are of the form 
(name (A Bl -- Bn) (MEMBER A (f00 Bl -- Bn))), 
where, if the code is to make sense, (foo Bl -- Bn) 
is a computable, finite list. So, for example, one 
constraint might mean: 

(1) The airbase is one of our airbases in 
Europe. 

and another might mean: 

the 
(2) The chosen 

chosen airbase. 
fighter wing is located at 

We sav a constraint enumerates a slot. S. 
+ I I 

absolutely iff it is of the form: 
(name (S)(MEMBER S----)). Constraint (l), above, 
enumerates airbases absolutely. A constraint 

To make choice generation more efficient, we 
optimize the constraints within the current 
context by collecting those which are timely and 
"compiling" them into a function of only the 
current slot, essentially by pre-evaluating all 
subexpressions which do not contain this slot. 

CRITICISM AND FUTURE DIRECTIONS 

1) We need to design and implement a 
comparable system for the complex constraints. 

2) The only relative priorities we can 
express between constraints are static. This 
might, someday, prove inadequate. 

3) There is danger of an existential trap. 
The simplest example occurs when the first slot 
filled is A and the candidates value satisfies 
every constraint whose domain is (A). There may, 
however, be a constraint whose domain is (A B) 
which cannot be satisfied with the proposed value 
of A and any value of B. Our interpreter does 
not see this until B is selected. The choice 
generation scheme discussed above could also be 
employed to test (perhaps very expensively), for 
such traps. 

ACKNOWLEDGEMENTS 

This work was supported by the Rome Air 
Development Center under Air Force contract 
F19628-80-C-0001. 

The FRL system was originally created at MIT 
by R. Bruce Roberts and Ira P. Goldstein. 
Roberts assisted us by defining and creating an 
"export nucleus" of FRL. The work reported here 
is built directly on the INTERLISP version of FRL 
translated and extended by Lars W. Ericson, while 
he was at MITRE. We are deeply indebted to him. 

REFERENCES 
LENGELMAN] Engelman, C., Berg, Charles H., and 
Bischoff, Miriam, "KNOBS: An Experimental 
Knowledge Based Tactical Air Mission Planning 
System and a Rule Based Aircraft Identification 
Simulation Facility", Proc. Sixth Inter. Joint 
Conf. Artificial Intelligence, Tokyo, 1979, pp. 
247-249. 

[ERICSON] Ericson, Lars W., "Translation of 
Programs from MACLISP to INTERLISP", MTR-3874, 
The MITRE Corporation9 Bedford, MA, Nov. 1979. 

[ROBERTSJULY] Roberts, R. Bruce, and Goldstein, 
Ira P., "The FRL Primer", MIT AI Lab. Memo 408, 
July 1977. 

[ROBERTSSEPT) Roberts, R. Bruce, and Goldstein, 
Ira P., "The FRL Manual", MIT AI Lab. Memo 409, 
September 1977. 

[STANSFIELD] Stansfield, James L., "Developing 
Support Systems for Information Analysis", in 
Artificial Intelligence, An MIT Perspective, 
Winston, P. H., and Brown, R. H., (Eds.), The MIT 
Press, Cambridge, MA, 1979. 

[STEFIK] Stefik, Mark, "An Examination of a 
Frame-Structured System", Proc. Sixth Inter. 
Joint Conf. on Artificial Intelligence, Tokyo, 
1979, pp. 845-852. 

[SZOLOVITS] Szolovits, P., Hawkinson, L. B., 
Martin, W. A., "An Overview of Owl, A Language 
for Knowledge Representation", MIT/LCS/TM-86, 
MIT, Cambridge, MA, June, 1977. 

186 


