
DESCRIPTIONS FOR A PROGRAMMING ENVIRONMENT 

Ira P. Goldstein and Daniel G. Bobrow 
Xerox Palo Alto Research Center 
Palo Alto, California 94304, U.S.A 

Abstract 

PIE is an experimental personal information 
environment implemented in Smalltalk that uses a 
description language to support the interactive 
development of programs. PIE contains a network of 
nodes, each of which can be assigned several 
perspectives. Each perspective describes a different 
aspect of the program structure represented by the 
node, and provides specialized actions from that point 
of view. Contracts can be created that monitor nodes 
describing different parts of a program’s description. 
Contractual agreements are expressible as formal 
constraints, or, to make the system failsoft, as English 
text interpretable by the user. Contexts and layers are 
used to represent alternative designs for programs 
described in the network. The layered network 
database also facilitates cooperative program design by 
a wow, and coordinated, structured documentation. 

Int reduction 

In most programming environments, there is support for 
the text editing of program specifications, and support for 
building the program in bits and pieces. However, there is 
usually no way of linking these interrelated descriptions into a 
single integrated structure. The English descriptions of the 
program, its rationale, general structure, and tradeoffs are 
second class citizens at best, kept in separate files, on scraps 
of paper next to the terminal, or, for a while, in the back of the 
implementor’s head. 

Furthermore, as the software evolves, there is no way of 
noting the history of changes, except in some primitive fashion, 
such as the history list of Interlisp [lo]. A history list provides 
little support for recording the purpose of a change other than 
supplying a comment. But such comments are inadequate to 
describe the rationale for coordinated sets of changes that are 
part of some overall plan for modifying a system. Yet 
recording such rationales is necessary if a programmer is to 
be able to come to a system and understand the basis for its 
present form. 

Developing programs involves the exploration of 
alternative designs. But most programming environments 
provide little support for switching between alternative designs 
or comparing their similarities and d<fferences. They do not 
allow alternative definition,s of procedures and data structures 
to exist simultaneously in the programming environment: nor 
do they provide a representation for the evolution of a 
particular set of definitions across time. 

In this paper we argue that by making descriptions first 
class objects in’s programming environment, one can make life 
easier for the programmer through the life cycle of a piece of 
software. Our argument is based on our experience with PIE, a 
description-based programming environment that supports the 
design, development, and documentation of Smalltalk 
programs. 

Networks 

The PIE environment is based on a network of nodes 
which describe different types of entities. We believe such 
networks provide a better basis for describing systems than 
files. Nodes provide a uniform way of describing entities of 
many sizes, from small pieces such as a single procedure to 
much larger conceptual entities. In our programming 
environment, nodes are used to describe code in individual 
methods, classes, categories of classes, and configurations of 
the system to do a particular job. Sharing structures between 
configurations is made natural and efficient by sharing regions 
of the network. 

Nodes are also used to describe the specifications for 
different parts of the system. The programmer and designer 
work in the same environment, and the network links elements 
of the program to elements of the design and specification. 
The documentation on how to use the system is embedded in 
the network also. Using the network allows multiple views of 
the documentation. For example, a primer and a reference 
manual can share many of the same nodes while using 
different organizations suited to their different purposes. 

In applying networks to the description of software, we 
are following a tradition of employing semantic networks for 
knowledge representation. Nodes in our network have the 
usual characteristics that we have come to expect in a 
representation language--for example, defaults, constraints, 
multiple perspectives, and context-sensitive value assignments. 

There is one respect in which the representation 
machinery developed in PIE is novel: it is implemented in an 
object-oriented language. Most representation research has 
been done in Lisp. Two advantages derive from this change of 
soil. The first is that there is a smaller gap between the 
primitives of the representation language and the primitives of 
the implementation language. Objects are closer to nodes 
(frames, units) than lists. This simplifies the implementation 
and gains some advantages in space and time costs. The 
second is that the goal of representing software is simplified. 
Software is built of objects whose resemblance to frames 
makes them natural to describe in a frame-based knowledge 
representation. 

187 

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved. 



Perspectives 

Attributes of nodes are grouped into perspectives. Each 
perspective reflects a different view of the entity represented 
by the node. For example, one view of a Smalltalk class 
provides a definition of the structure of each instance, 
specifying the fields it must contain; another describes a 
hierarchical organization of the methods of the class; a third 
specifes various external methods called from the class; a 
fourth contains user documentation of the behavior of the 
class. 

The attribute names of each perspective are local to the 
perspective. Originally, this was not the case. Perspectives 
accessed a common pool of attributes attached to the node. 
However, this conflicted with an important property that design 
environments should have, namely, that different agents can 
create perspectives independently. Since one agent cannot 
know the names chosen by another, we were led to make the 
name space of each perspective on a node independent. 

Perspectives may provide partial views which are not 
necessarily independent. For example, the organization 
perspective that categorizes the methods of a class and the 
documentation perspective that describes the public messages 
of a class are interdependent. Attached procedures are used 
to maintain consistency between such perspectives. 

Each perspective supplies a set of specialized actions 
appropriate to its point of view. For example, the print action 
of the structure perspective of a class knows how to prettyprint 
its fields and class variables, whereas the organization 
perspective knows how to prettyprint the methods of the class. 
These actions are implemented directly through messages 
understood by the Smalltalk classes defining the perspective. 

Messages understood by perspectives represent one of 
the advantages obtained from developing a knowledge 
representation language within an object-oriented environment. 
In most knowledge representation languages, procedures can 
be attached to attributes. Messages constitute a 
generalization: they are attached to the perspective as a whole. 
Furthermore, the machinery of the object language allows 
these messages to be defined locally for the perspective. Lisp 
would insist on global functions names. 

Contexts and Layers 
All values of attributes of a perspective are relative to a 

context. Context as we use the term derives from Conniver 
[9]. When one retrieves the values of attributes of a node, one 
does so in a particular context, and only the values assigned in 
that context are visible. Therefore it is natural to create 
alternative contexts in which different values are stored for 
attributes in a number of nodes. The user can then examine 
these alternative designs, or compare them without leaving the 
design environment. Since there is an explicit model of the 
differences between contexts, PlEc can highlight differendes 
between designs. PIE also provides tools for the user to 
choose or create appropriate values for merging two designs. 

Design involves more than the consideration of 
alternatives. It also involves the incremental development of a 
single alternative. A context is structured as a sequence of 
layers. It is these layers that allow the state of a context to 
evolve. The assignment of a value to *a property is done in a 
particular layer. Thus the assertion that a particular procedure 
has a certain source code definition is made in a layer. 
Retrieval from a context is done by looking up the value of an 

attribute, layer by layer. If a value is asserted for the attribute 
in the first layer of the context, then this value is returned. If 
not, the next layer is examined. This process is repeated until 
the layers are exhausted. 

Extending a context by creating a new layer is an 
operation that is sometimes done by the system, and 
sometimes by the user. The current PIE system adds a layer 
to a context the first time the context is modified in a new 
session. Thus, a user can easily back up to the state of a 
design during a previous working session. The user can 
create layers at will. This may be done when he or she feels 
that a given groups of changes should be coordinated. 
Typically, the user will group dependent changes in the same 
layer. 

Layers and contexts are themselves nodes in the 
network. Describing layers in the network allows the user to 
build a description of the rationale for the set of coordinated 
changes stored in the layer in the same fashion as he builds 
descriptions for any other node in the network. Contexts 
provide a way of grouping the incremental changes, and 
describing the rationale for the group as a whole. Describing 
contexts in the network also allows the layers of a context to 
themselves be asserted in a context sensitive fashion (since all 
descriptions in the network are context-sensitive). As a result, 
super-contexts can be created that act as big switches for 
altering designs by altering the layers of many sub-contexts. 

Contracts and Constraints 

In any system, there are dependencies between different 
elements of the system. If one changes, the other should 
change in some corresponding way. We employ contracts 
between nodes to describe these dependencies. Implementing 
contracts raises issues involving 1) the knowledge of which 
elements are dependent; 2) the way of specifying the 
agreement; 3) the method of enforcement of the agreement; 4) 
the time when the agreement is to be enforced. 

PIE provides a number of different mechanisms for 
expressing and implementing contracts. At the implementation 
level, the user can attach a procedure to any attribute of a 
perspective, (see [2] for a fuller discussion of attached 
procedures): this allows change of one attribute to update 
corresponding values of others. At a higher level, one can 
write simple constraints in the description language (e.g. two 
attributes should always have identical values), specifying the 
dependent attributes. The system creates attached procedures 
that maintain the constraint. 

There are constraints and contracts which cannot now 
be expressed in any formal language. Hence, we want to be 
able to express that a set of participants are interdependent, 
but not be required to give a formal predicate specifying the 
contract. PIE allows us to do this. Attached procedures are 
created for such contracts that notify the user if any of the 
participants change, but which do not take any action on their 
own to maintain consistency. Text can be attached to such 
informal contracts that is displayed to the user when the 
contract is triggered. This provides a useful inter-programmer 
means of communication and preserves a failsoft quality of the 
environment when formal descriptions are not available. 

Ordinarily such non-formal contracts would be of little 
interest in artificial intelligence. They are, after all, outside the 
comprehension of a reasoning program. However, our thrust 
has been to build towards an artificially intelligent system 
through succcessive stages of man-machine symbiosis. This 

188 



approach has the advantage that it allows us to observe 
human reasoning in the controlled setting of interacting with 
the system. Furthermore, it allows us to investigate a direction 
generally not taken in Al applications: namely the design of 
memory-support rather than reasoning-support systems. 

An issue in contract maintenance is deciding when to 
allow a contract to interrupt the user or to propagate 
consistency modifications. We use the closure of a layer as 
the time when contracts are checked. The notion is that a 
layer is intended to contain a set of consistent values. While 
the user is working within a layer, the system is generally in an 
inconsistent state. Closing a layer is an operation that 
declares that the layer is complete. After contracts are 
checked, a closed layer is immutable. Subsequent changes 
must be made in new layers appended to the appropraiate 
contexts. 

Coordinating designs 

So far we have emphasized that aspect of design which 
consists of a single individual manipulating alternatives. A 
complementary facet of the design process involves merging 
two partial designs. This task inevitably arises when the 
design process is undertaken by a team rather than an 
individual. To coordinate partial designs, one needs an 
environment in which potentially overlapping partial designs 
can be examined without overwriting one another. This is 
accomplished by the convention that different designers place 
their contributions in separate layers. Thus, where an overlap 
occurred, the divergent values for some common attributes are 
in distinct layers. 

Merging two designs is accomplished by creating a new 
layer into which are placed the desired values for attributes as 
selected from two or more competing contexts. For complex 
designs, the merge process is, of course, non-trivial. We do 
not, and indeed cannot, claim that PIE eliminates this 
complexity. What it does provides is a more finely grained 
descriptive structure than files in which to manipulate the 
pieces of the design. Layers created by a merger have 
associated descriptions in the network specifying the contexts 
participating in the merger and the basis for the merger. 

Meta-description 

Nodes can be assigned meta-nodes whose purpose is to 
describe defaults, constraints, and other information about 
their object node. Information in the meta-node is used to 
resolve ambiguities when a command is sent to a node having 
multiple perspectives. 

One situation in which ambiguity frequently arises is 
when the PIE interface is employed by a user to browse 
through the network. When the user selects a node for 
inspection, the interface examines the meta-node to determine 
which information should be automatically displayed for the 
user. By appropriate use of meta-information, we have made 
the default display of the PIE browser identical to one used in 
Smalltalk. (Smalltalk code is organized into a simple four-level 
heirarchy, and the Smalltalk browser allows examination and 
modification of Smalltalk code using this taxonomy.) As a 
result, a novice PIE user finds the environment similar to the 
standard Smalltalk programming environment which he has 
already learned. 

Simplifying the presentation and manipulation of the 
layered network underlying the PIE environment remains an 
important research goal, if the programming environment 

supported by PIE is to be useful as well as powerful. We have 
found use of a meta-level of descriptions to guide the 
presentation of the network to be a powerful device to achieve 
this utility. 

Conclusion 

PIE has been used to describe itself, and to aid in its 
own development. Specialized perspectives have been 
developed to aid in the description of Smalltalk code, and for 
PIE perspectives themselves. On-line documentation is 
integrated into the descriptive network. The implementors find 
this network-based approach to developing and documenting 
programs superior to the present Smalltalk programming 
environment. A small number of other people have begun to 
use the system. 

This paper presents only a sketch of PIE from a single 
perspective. The PIE description language is the result of 
transplanting the ideas of KRL [2] and FRL [6] into the object 
oriented programming environment of Smalltalk [8], [7]. A 
more extensive discussion of the system in terms of the design 
process can be found in [l], and [4]. A view of the PIE 
description language as an extension of the object oriented 
programming metaphor can be found in [5]. Finally, the use of 
PIE as a prototype office information system is described in 

[31. 

References 

ill 

PI 

[31 

[41 

151 

161 

[71 

WI 

WI 

[lOI 

Bobrow, D.G. and Goldstein, I.P. “Representing Design 
Alternatives”, Proceedings of the A/S6 Conference, 
Amsterdam, 1980. 

Bobrow, D.G. and Winograd, T. “An overview of KRL, a 
knowledge representation language”, Cognifive Science 
1, 1 1977. 

Goldstein, I.P. “PIE: A network-based personal 
information environment”, Proceedings of the Office 
Semantics Workshop, Chatham, Mass., June, 1980. 

Goldstein, I.P. and Bobrow, D.G., “A layered approach to 
software design “, Xerox Palo Alto Research Center CSL- 
80-5. 1980a. 

Goldstein, I.P. and Bobrow, D.G., “Extending Object 
Oriented Programming in Smalltalk”, Proceedings of the 
Lisp Conference. Stanford University, 1980b. 

Goldstein, I.P. and Roberts, R.B. “NUDGE, A knowledge- 
based scheduling program”, Proceedings of the Fifth 
International Joint Conference 0” Artificial Intelligence, 
Cambridge: 1977, 257-263. 

Ingalls, Daniel H., “The Smalltalk- Programming 
System: Design and Implementation,” Conference Record 
of the Fifth Annual ACM Symposium on Principles of 

Programming Languages, Tucson, Arizona, January 1978, 
pp 9-16. 

Kay, A. and Goldberg, A. “Personal Dynamic Media” /EEE 
Computer, March, 1977. 

Sussman, G., & McDermott, D. “From PLANNER to 
CONNIVER -- A genetic approach”. Fall Joint Computer 
Conference. Montvale, N. J.: AFIPS Press, 1972. 

Teitelman, W., The lnterlisp Manual, Xerox Palo Alto 
Research Center, 1978. 

189 


