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1. Introduction 

Much of one’s knowledge of a task domain is in the form of 
simple facts and procedures. While these facts and procedures may 
vary from domain to domain, there is often substantial &nilarity in 
the “abstract structure” of the knowledge. For example, the notion 
of a hierarchy is ‘found in biological taxonomy, the geological 
classification of time, and the organization chart of a corporation. 
One advantage of recognizing such abstractions is that they can be 
used in selecting metaphors and models that are computationally 
very powerful and efficient. This power and efficiency can be used 
in evaluating plausible hypotheses about new domains and can 
thereby motivate the induction of abstractions even in the face of 
partial or inconsistent data. Furthermore, there is a seductive 
argument for how such information processing criteria can be used 
in characterizing “intuitive” thought and in explaining the cogency 
of causal arguments. The idea of large-scale, unified knowledge 
structures like abstractions is not a new one. The gestalt 
psychologists (e.g. [Kohler]) had the intuition decades ago, and 
recently Kuhn [Kuhn], Minsky [Minsky], and Schank [Schank & 
Abelson] have embodied similar intuitions in their notions of 
paradigms, frames, and scripts. (See also [Bobrow & Norman] and 
[Moore & Newell] for related ideas.) The novelty hcrc lies in the 
use of such structures to select g6od metaphoa and models and in 
the effects of the resulting power and efficiency on cognitive 
behavior. 

This paper describes a particular formalization of 
abstractions -in a knowlcdgc rcprcsentation system called hNAr.OG 
and shows how abstractions can be used in model building, 
understanding and generating analogies, and theory formation. 
The prcscntation here is necessarily brief and mentions only the 
highlights. The next section defines the notions of abstraction and 
simulation structure. Section 3 describes the use of abstractions in 
building computational models, and section 4 shows how 
abstractions can bc used to gain power as well as efficiency. 

2. Abstrrrclions and Sirrwlalion Struclures 

Formally, an abslrucfion is a set of symbols for relations, 
functions, constants, and actions together with a set of axioms 
relating these symbols to each other. Abstractions include not only 
small, simple concepts like hierarchies but also more complex 
notions like concavity and convexity or particles and waves. A 
model for an abstraction is essentially an interpretation fcr the 
symbols that satisfies the associated axioms. Different task domains 
can bc mod& of the same abstraction (as biological taxonomy, 
geological time, and organization charts are instances of 
hierarchies); or, said the other way around, each abstraction car 
have a number of different models. Importantly, there are multipk 
computational models for most abstractions. In order to distinguish 
computer models from the task domains they are designed tc 
mimic, they are hereafter termed simulufion slrucfures, following 
Weyhrauch [Weyhrauch]. 

There is a strong relationship between abstractions and 
metaphors, or analogies. Many analogies are best understood as 
statements that the situations being compared share a common 
abstraction. For example, when one asserts that the organization 
chart of a corporation is like a tree or like the taxonomy of animals 

in biology, what he is saying is that they are all hierarchies. With 
this view, the problem of understanding an analogy becomes one of 
recognizing the shared abstraction. 

Of course there are an infinite number of abstractions. 
What gives the idea force is that the simulation structures for 
certain abstractions have representations that arc particularly 
economical, algorithms that are particularly efficient, or theorems 
that are particularly powerful, e.g. hierarchies, grids, partial orders, 
rings, groups, monoids. Consequently, there is advantage to bL 
gained from recognizing the applicability of one of these special 
abstractions rather than synthesizing a new one. 

Even when the applicability of such special abstractions and 
simulation structures cannot be determined with certainty (say, in 
the face of incomplete or faulty information), there is advantage in 
hypothesizing them. Until one is forced to switch abstractions due 
to incontrovertible data, one has an economical representation and 
powerful problem solving methods. By biasing the early choice of 
abstractions in this way, these criteria can have qualitative effcctc 
on theory formation. 

3. Models 

The importance of abstractions and their associated 
measures of economy, efficiency, and power is clearest in the 
context of a concrete implementation like the ANALOG knowledge 
reprcscntation system. l’hc interesting feature of ANALOG is that it 
utilizes a variety of simulation structures for representing different 
portions of the knowledge of a task domain. This setup is 
graphically illustrated in figure 1. The user asserts facts in the 
system’s uniform, domain-independent formalism, and the system 
stores them by modifying the appropriate simulation structure. 
Facts for which no simulation structure is appropriate are simply 
filed away in the uniform representation. (ANALOG currently uses 
a semantic network representation called Dl3 [Gcnesereth 761. The 
formalism allows one to cncodc scntcnccs in the predicate calculus 
of any order and provides a rich meta-level vocabulary.) 
Descriptions of each of ANALOG'S abstractions and simulation 
structures arc also cncodcd within the DU rcprescntation. 

I ASS1 

Figure 1 - An Overview of ANALQC 

This approach departs from the custom in knowledge 
representation systems of using uniform, domain independent 
formalisms. While there are advantages to uniformity, in many 
cases the representations are less economical than specialized data 
structures, and the associated general procedures (like resolution) 
are less efficient or less powerful than specialized algorithms. For 
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example, a set in a small universe can be efficiently represented as 
a bit vector in which the setting of each bit determines whether the 
corresponding object is in the set. Union and intersection 
computations in this representation can be done in a single 
machine cycle by hardware or microcoded boolean operations. By 
contrast, a frame-like representation of sets would consume more 
space, and the union and intersection algorithms would have 
running times linear or quadratic in the sizes of the sets. The 
distinction here is essentially that between “Fregcan” and 
“analogical” representations, as described by Balzer [Balzer]. Note 
that ANALOG'S approach is perfectly compatible with uniform 
knowledge representation systems like DB and RLL [Greiner & 
Lenat]. The addition of abstractions and simulation structures can 
be viewed as an incremental improvement to such systems, and 
their absence or inapplicability can be handled gracefully by using 
the uniform representation. 

It’s important to realize that ANALOG is not necessarily 
charged with inventing these clever representations and algorithms, 
only recognizing their applicability and applying them. The 
approach is very much in the spirit of the work done by Green, 
Barstow, Kant, and Low in that there is a knowledge base 
describing some of the best data representations and algorithms 
known to computer science. This knowledge base is used in 
selecting good data representations and efficient algorithms for 
computing in a new task domain. One difference with their 
approach is that in ANALOG there is a catchall representation for 
encoding assertions when no simulation structure is applicable. 
Other differences include an emerging theory of representation 
necessary in designing new simulation structures (see section 3.2) 
and the use of the criteria of economy, efficiency, and power in 
theory formation. 

ANALOG'S use of simulation structures is in a very real sense 
an instance of model building. Architects and ship designers use 
physical models to get answers that would bc too difficult or too 
expensive to obtain using purely formal methods. ANALOG uses 
simulation structures in much the same’ way. In fact, there is no 
essential reason why the simulation structures it uses couldn’t be 
physical models. Furthermore, as VLSI dissolves what John Backus 
calls the vonNeumann bottleneck, the number of abstractions with 
especially efficient simulation structures should grow dramatically. 

3.1 Building a Model 

As an example of modeling, consider the problem of 
encoding the ofganization chart of a corporation: ‘[‘he first step in 
building a model for a new task domain is finding an appropriate 
abstraction and simulation structure. The knowledge engineer may 
directly name the abstraction or identify it with an analogy, or the 
system may be able to infer it from an examination of the data. In 
this case, the hierarchy abstraction is appropriate, and there are 
several appropriate simulation structures. One of these is shown in 
figure 2. Each object in the universe is represented as a “cons” cell 
in which the “car” points to the object’s parent. The relation (here 
called Rel) is just the transitive closure of the Car relation, and Nil 
is the root. For the purposes of this example, the “cdr” of each 
cell may be ignored. 

,++$$yj&$$ 
Figure 2 - A Simulation Structure for the Hierarchy Abstraction 

An important requirement for a simulation structure is that it be 
modifiable. Therefore, it must include actions that the model 
builder can use in encoding knowledge of the task domain. 
Usually, this requires the ability to create new objects and to 
achieve relations among them. In this case, the Neons subroutine 
creates a new object, and Rplaca changes an object’s parent. 

Part of the task of finding an appropriate abstraction and 
simulation structure is setting it up for use in encoding knowledge 
of the task domain. This includes three kinds of information. The 
first is an index so that the system can determine the simulation 
structure appropria‘tt: to a new assertion. (This index is necessary 
since several domains and simulation structures may be in use 
simultaneously). Secondly, there must be a procedure for mapping 
each assertion into its corresponding assertion about the simulation 
structure. And, finally, the system must have information about 
how to achieve the new assertion. 

Once the simulation structure is chosen and set up, the 
system builder can begin to assert facts about the task domain, and 
the system will automatically modify the simulation structure. As 
an example of this procedure, consider how the system would 
handle the assertion of the fact (Boss-of Carleton Bertram). First, 
it would use its index to determine that the simulation structure of 
figure 2 is being used and to recover the mapping information. 
‘I’hcn it would map the assertion into the simulation domain. In 
this cast, let’s say that Arthur is the boss of Bcrtrm and lhdrice 
while Carleton has been installed in the model as Ileatrice’s 
employee. Then the new assertion would bc (He1 ((Nil)) (Nil)), 
where the first argument is the object rcprcsenting Carleton and 
the second represents Bcrtram. By examining the mcta-level 
information about the simulation structure, the system retrieves a 
canned proccdurc (Rplaca) for achieving this fact and cxecutcs it, 
with the result that Carleton’s “car” is redirected from Bcittr!.ce to 
Bcrtram. 

An intcrcsting aspect of model building is that complete 
information is often required. For example, in adding a node to 
the simulation structure of figure 2, the system must know the 
object’s parent in order to succeed. (It has to put something in the 
“car” of the cell.) This problem can sometimes be handled by the 
addition of new objects and relations that capture the ambiguity. 
For example, one could add the special token Unknown as a place 
filler in the simulation structure above. (Of course, the resulting 
structure would no longer be a hierarchy.) Another example is 
using the concept of uncle as a union of father’s brother and 
mother’s brother. Unfortunately, this approach increases the size of 
the model and makes deductions more difficult. Unless there are 
strong properties associated with such disjunctive concepts, it is 
usually better to carry the ambiguity at the meta-level (i.e. outside 
the model, in the neutral language of the knowledge representation 
system) until the uncertainty is resolved. 

Another interesting aspect of the use of simulation structures 
is the automatic enforcement of the axioms of the abstraction. For 
example, in the simulation structure of figure 2, it is impossible to 
assert two parents for any node simply because a “cons” cell has 
one and only one “car”. Where this is not the case (as when a 
simulation structure is drawn from a more general abstraction), thy 
axioms can still be used to check the consistency and completeness 
of the assertions a system builder makes in describing his task 
domain. For example, if the system knew that a group of 
assertions was intended to describe a hierarchy, it could detect 
inconsistent data such as cycles and incomplete data such as nodes 
without parents. 

3.2 Designing a Simulation Sfructure for an Abslraclion 

The only essential criteria for simulation structures are 
representational adequacy and structure appropriate to their 
abstractions. For every assertion about the task domain in the 
language of the abstraction, there must be an assertion about the 
simulation structure; and the structure must satisfy the axioms of 
the abstraction. 

In creating a simulation structure, one good heuristic is to 
try to set up a homomorphism. Sometimes, the objects of the 
simulation structure can be used directly, as in the case of using 
“cons” cells to represent nodes in a hierarchy. In the example 
above, the mapping of objects from the corporation domain into 
the domain of list structure was one-to-one, i.e. the corporate 
objects were all rcprcsentcd by distinct pieces of list structure, and 
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the relations and actions all mapped nicely into one another. Of 
course, this need not always be the case. Consider, for example, 
the state vector representation of the Blocks World proposed by 
McCarthy, in which the Supports relation bctwccn each pair of 
blocks is represented by a distinct bit in a bit vector. (Think of the 
vector as a matrix in which the Ci, jxh bit is on if and only if 
block i is on block J). In this representation the fact (Supports A 
B) would translate into something like (On Bit-AR Vector-l), and 
theie would be no distinct representations of the blocks A and B. 

In other cases, more complex objects may be ncccssary in 
order to provide enough relations. When a domain does not 
provide an adequate set of relations, it’s a good idea to synthesize 
complex structures from simpler ones. For example, a simulation 
structure’ for an abstraction with three’ binary relations could be 
built in the list world by representing objects as pairs of “cons” 
cells in which the “car” represents the first relation, the “cd? 
points to the second cell, the “cad? represents the second relation, 
and the,“cddr” represents the third. This approach is facilitated by 
programming languages with extensible data structures. 

Obviously, it pays to economize by using the prcdefined 
relations of the simulation domain where possible. For example, a 
good representation for a univariate polynomiat is a list of its 
coefficients, and one gets the degree of the polynomial for free (the 
length of the list minus 1). One advantage is representational 
economy; another is automatic enforcement of the abstraction’s 
axioms, as described in the last section. 

In order to use a simulation structure, it may be necessary 
to transform objects into a canonical form. For example, one can 
represent a univariate polynomial as a list of coefficients, but the 
polynomial must be in expanded form. There is a large body of 
literature on canonical forms for specific algebraic structures, while 
[Genesereth 791 gives a general but weak technique for inventing 
such forms directly from an abstraction’s axioms. 

In using a simulation structure, there is a tradeoff betweeh 
the amount of work done by the model and the amount done by 
the knowledge representation system. For example, in the 
simulation structure of figure 2, one must loop over the parent 
relation to determine whether two objects are related. This can be 
done either by the knowledge representation system or by a L'ISP 
procedure in the simulation structure. Obviously, it’s a good idea 
to have the simulation structure do as much work as possiblq, 

3.3 Interfacing Simulation Stniclures 

For most interesting task domains, the chances are that a 
single simulation structure is not sufficient. In such cases, it is 
sometimes possible to piece together several different simulation 
structures. The simplest situation arises when the objects of the 
task domain form a hierarchy under the “part” relation. Then one 
can choose one representation for the “topmost” objects and a 
different representation for the parts. The spirit of this approach is 
very similar to that of “object-oriented” programming in which 
each object retains information about how it is to be processed.’ 
One disadvantage of this approach is that each object must have 
explicit “type” information stored with it. Barton, Genesereth, 
Moses, and Zippel have recently developed a scheme that 
eliminates this need by separating the processing information from 
each object and passing it around in a separate “tree” of 
operations. ANALOG uses this schcmc for encoding the operations 
associated with each simulation struct’ure. 

Task domains with several relations are sometimes 
decomposable into several abstractions, and these relations can then 
be represented independently. More often the relations are 
interdependent; and, when this is the case, the interdependence 
must be dealt with in the uniform representation, 

Even when a single abstraction would fit the task domain, it 
may be advisable to use several. Consider, fw .example, a partial 
order that nicely decomposes into two trees. Furthermore, there 
are often advantages to multiple representations of objects, as 
argued by Moses [Moses]. 

4. Thinking With Abstractions and Simulation S@uclures 

The USC of specialized simulation structures gives ANALOG 
an economy and efficiency not possible with a uniform 
representation. The economy can be expressed in terms of the 
space saved by representing assertions in the simulation structure 
rather than the uniform representation. This economy derives from 
the elimination of the overhead inherent in uniform formalisms 
and the use of relations implicit in the simulation structure (as the 
length of a list reflects the dcgrce of the polynomial it represents). 
The efficiency refers to the time involved in doing dcd*:rtions and 
solving problems. This efficiency may be attributable to clever 
algorithms, or it may be the result of long familiarity with the 
domain from which the abstraction evolved (due to the memory of 
many special case heuristics). Lenat [Lenat et. al.] discusses how a 
computer might improve its own performance by self-monitoring. 

An interesting pos,*bility suggested by this economy and 
efficiency is for the program to use these criteria in evaluating 
plausible hypotheses about a new domain. In the face of 
incomplete or contradictory data, the program should favor the 
more economical abstraction. Clearly, there is some evidence for 
this sort of behavior in human cognition. Consider, for example, 
Mendeleev’s invention of the periodic table of the elements. He 
was convinced of the correctness of the format in spite of 
contradictory data, for reasons that can only be identified as 
simplicity. 

These criteria of economy and efficiency are also of use in 
characterizing why it is easier to solve problems from one point of 
view than another, e.g. proving a theorem using automata theory 
rather than formal grammars. Part of what makes causal 
arguments (see [deKleer] for example) so compelling is that they 
are easy to compute with. The reason for this is that a causal 
argument is an instance of a cognitively efficient abstraction, 
namely a diicctcd graph. One is tempted, therefore, to generalize 
dcKleer’s notion of causal envisionment as finding economical and 
efficient abstractions (perhaps identified with analogies) in which 
the desired conclusions are reached via simple computations. 

The idea can be carried a bit fUrther and generalized to 
include the criterion of problem solving power. In particular, one 
should favor an abstraction for its ability to solve a pending 
problem despite insufficient data. The obvious difficulty is that the 
assumption may bc wrong or there may be scvcral abstractions that 
are equally probable and useful. Consider, for example, the 
following arguments for determining the distance between the 
observer and the middle vertex of a Necker cube. “Well, the lines 
form a cube, and so the middle vertex must be closer to me than 
the top edge.” “No, not at all, the figure is concave, and so the 
middle vertex must be filrther away.” Both arguments are 
consistent with the data and refer to a single abstraction, 2nd in 
each case the conclusion is deductively related to that view. A 
second example is evident in the particulate-wave controversy. The 
particulate view is a simple abstraction that accounts for much of 
the data and allows one to solve outstanding problems. Of cours6, 
the same can be said for the wave view. Unfortunately, the 
predictions don’t agree. A similar argument explains the inferential 
leap a child makes in declaring that the wind is caused by the trees 
waving their leaves. When the child waves his hand, it makes a 
breeze; the trees wave when the wind blows; so they must have 
volition and motive power; and that would account for the wind. 

The reasoning in these examples is usually termed 
“analogical”. The key is the recognition of a known abstraction 
common to the situations being compared. This conception of 
analogy differs markedly from that of Hayes-Roth and Winston. 
In their view two situations are analogous if there is any match 
between the two that satisfies the facts of both worlds. If the 
match is good, the facts or heuristics of one world may be 
transferred to the other. The problem is that these facts may have 
nothing to do with the analogy. Just because two balls are big and 
plastic, one can’t infer because one ball is red that the other is also 
red. Abstractions are ways of capturing the necessary 
interdependence of facts. For example, the size and material of a 
ball do affect its mechanical behavior, and so the skills usefU1 for 
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bouncing one should be of value in bouncing the other. Also notL 
that the match need not be close in order for there to be a useful 
analogy. Linnaean taxonomy and organization charts have few 
superficial details in common, but the analogy is nonetheless 
compelling, and as a result the algorithms for reasoning about one 
can bc transferred to the other. The work of Hayes-Roth and 
Winston is, however, applicable where no abstractions exist yet. 
Their matching algorithms and the techniques of Buchanan, 
Mitchell, Dietterich and Michalski, and Lenat should be important 
in inducing new abstractions. 

An important consumer for these ideas is the field of 
computer-aided instruction. There is a current surge of interest in 
producing a “generative theory of cognitive bugs” (see [Brown], 
[Genesereth 80a], and [Matz]). The use of abstractions and the 
criteria of economy, efficiency, and power in theory formation is 
very seductive in this regard. Unfortunately, there is no reason to 
believe that the hardware of a vonNeumann computer in any way 
resembles the specialized capabilities of the human brain. (Indeed, 
psychologists are still debating whether there are any analogical 
processes in the brain at all. See, for example, [Kosslyn & 
Pomerantz], [Kosslyn & Schwartz], pylyshyn], and [Shepard & 
Metzler].) Thus, the idea at present is not so much a model for 
human cognitive behavior as a metaphor. 

5. Conclusion 

The ANALOG system was dcvclopcd over a period of time to 
test the ideas presented here. One program accepts an analogy and 
infers the appropriate abstraction; another builds a model of the 
task domain as assertions are entered; and a third uses the model 
to answer questions. There is a sketchy implementation of the 
simulation structure designer, but no effort has been made to build 
the theory formation program. 

In summary, the key ideas are (1) the role of abstractions in 
understanding metaphors and selecting good models for task 
domains, (2) the use of’ models to acquire economy, efficiency, and 
problem solving power, and (3) the-importance of these criteria in 
theory formation. Abstractions and simulation structures make for 
a knowledge representation discipline that facilitates the 
construction of powerful, efficient AI programs. The approach 
suggests a program for much future work in AI and Computer 
Science, viz. the identification of us&11 abstractions and the 
implementation of corresponding simulation structures that take 
advantage of the spccia! computational characteristics of the 
vonNeumann machine and its successors. 
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