
Metaphors and Models

Michael R. Gcnesereih
Computer Science Department

Stanford University
Stanford, California 94305

1. Introduction

Much of one’s knowledge of a task domain is in the form of
simple facts and procedures. While these facts and procedures may
vary from domain to domain, there is often substantial &nilarity in
the “abstract structure” of the knowledge. For example, the notion
of a hierarchy is ‘found in biological taxonomy, the geological
classification of time, and the organization chart of a corporation.
One advantage of recognizing such abstractions is that they can be
used in selecting metaphors and models that are computationally
very powerful and efficient. This power and efficiency can be used
in evaluating plausible hypotheses about new domains and can
thereby motivate the induction of abstractions even in the face of
partial or inconsistent data. Furthermore, there is a seductive
argument for how such information processing criteria can be used
in characterizing “intuitive” thought and in explaining the cogency
of causal arguments. The idea of large-scale, unified knowledge
structures like abstractions is not a new one. The gestalt
psychologists (e.g. [Kohler]) had the intuition decades ago, and
recently Kuhn [Kuhn], Minsky [Minsky], and Schank [Schank &
Abelson] have embodied similar intuitions in their notions of
paradigms, frames, and scripts. (See also [Bobrow & Norman] and
[Moore & Newell] for related ideas.) The novelty hcrc lies in the
use of such structures to select g6od metaphoa and models and in
the effects of the resulting power and efficiency on cognitive
behavior.

This paper describes a particular formalization of
abstractions -in a knowlcdgc rcprcsentation system called hNAr.OG
and shows how abstractions can be used in model building,
understanding and generating analogies, and theory formation.
The prcscntation here is necessarily brief and mentions only the
highlights. The next section defines the notions of abstraction and
simulation structure. Section 3 describes the use of abstractions in
building computational models, and section 4 shows how
abstractions can bc used to gain power as well as efficiency.

2. Abstrrrclions and Sirrwlalion Struclures

Formally, an abslrucfion is a set of symbols for relations,
functions, constants, and actions together with a set of axioms
relating these symbols to each other. Abstractions include not only
small, simple concepts like hierarchies but also more complex
notions like concavity and convexity or particles and waves. A
model for an abstraction is essentially an interpretation fcr the
symbols that satisfies the associated axioms. Different task domains
can bc mod& of the same abstraction (as biological taxonomy,
geological time, and organization charts are instances of
hierarchies); or, said the other way around, each abstraction car
have a number of different models. Importantly, there are multipk
computational models for most abstractions. In order to distinguish
computer models from the task domains they are designed tc
mimic, they are hereafter termed simulufion slrucfures, following
Weyhrauch [Weyhrauch].

There is a strong relationship between abstractions and
metaphors, or analogies. Many analogies are best understood as
statements that the situations being compared share a common
abstraction. For example, when one asserts that the organization
chart of a corporation is like a tree or like the taxonomy of animals

in biology, what he is saying is that they are all hierarchies. With
this view, the problem of understanding an analogy becomes one of
recognizing the shared abstraction.

Of course there are an infinite number of abstractions.
What gives the idea force is that the simulation structures for
certain abstractions have representations that arc particularly
economical, algorithms that are particularly efficient, or theorems
that are particularly powerful, e.g. hierarchies, grids, partial orders,
rings, groups, monoids. Consequently, there is advantage to bL
gained from recognizing the applicability of one of these special
abstractions rather than synthesizing a new one.

Even when the applicability of such special abstractions and
simulation structures cannot be determined with certainty (say, in
the face of incomplete or faulty information), there is advantage in
hypothesizing them. Until one is forced to switch abstractions due
to incontrovertible data, one has an economical representation and
powerful problem solving methods. By biasing the early choice of
abstractions in this way, these criteria can have qualitative effcctc
on theory formation.

3. Models

The importance of abstractions and their associated
measures of economy, efficiency, and power is clearest in the
context of a concrete implementation like the ANALOG knowledge
reprcscntation system. l’hc interesting feature of ANALOG is that it
utilizes a variety of simulation structures for representing different
portions of the knowledge of a task domain. This setup is
graphically illustrated in figure 1. The user asserts facts in the
system’s uniform, domain-independent formalism, and the system
stores them by modifying the appropriate simulation structure.
Facts for which no simulation structure is appropriate are simply
filed away in the uniform representation. (ANALOG currently uses
a semantic network representation called Dl3 [Gcnesereth 761. The
formalism allows one to cncodc scntcnccs in the predicate calculus
of any order and provides a rich meta-level vocabulary.)
Descriptions of each of ANALOG'S abstractions and simulation
structures arc also cncodcd within the DU rcprescntation.

I ASS1

Figure 1 - An Overview of ANALQC

This approach departs from the custom in knowledge
representation systems of using uniform, domain independent
formalisms. While there are advantages to uniformity, in many
cases the representations are less economical than specialized data
structures, and the associated general procedures (like resolution)
are less efficient or less powerful than specialized algorithms. For

208

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved.

example, a set in a small universe can be efficiently represented as
a bit vector in which the setting of each bit determines whether the
corresponding object is in the set. Union and intersection
computations in this representation can be done in a single
machine cycle by hardware or microcoded boolean operations. By
contrast, a frame-like representation of sets would consume more
space, and the union and intersection algorithms would have
running times linear or quadratic in the sizes of the sets. The
distinction here is essentially that between “Fregcan” and
“analogical” representations, as described by Balzer [Balzer]. Note
that ANALOG'S approach is perfectly compatible with uniform
knowledge representation systems like DB and RLL [Greiner &
Lenat]. The addition of abstractions and simulation structures can
be viewed as an incremental improvement to such systems, and
their absence or inapplicability can be handled gracefully by using
the uniform representation.

It’s important to realize that ANALOG is not necessarily
charged with inventing these clever representations and algorithms,
only recognizing their applicability and applying them. The
approach is very much in the spirit of the work done by Green,
Barstow, Kant, and Low in that there is a knowledge base
describing some of the best data representations and algorithms
known to computer science. This knowledge base is used in
selecting good data representations and efficient algorithms for
computing in a new task domain. One difference with their
approach is that in ANALOG there is a catchall representation for
encoding assertions when no simulation structure is applicable.
Other differences include an emerging theory of representation
necessary in designing new simulation structures (see section 3.2)
and the use of the criteria of economy, efficiency, and power in
theory formation.

ANALOG'S use of simulation structures is in a very real sense
an instance of model building. Architects and ship designers use
physical models to get answers that would bc too difficult or too
expensive to obtain using purely formal methods. ANALOG uses
simulation structures in much the same’ way. In fact, there is no
essential reason why the simulation structures it uses couldn’t be
physical models. Furthermore, as VLSI dissolves what John Backus
calls the vonNeumann bottleneck, the number of abstractions with
especially efficient simulation structures should grow dramatically.

3.1 Building a Model

As an example of modeling, consider the problem of
encoding the ofganization chart of a corporation: ‘[‘he first step in
building a model for a new task domain is finding an appropriate
abstraction and simulation structure. The knowledge engineer may
directly name the abstraction or identify it with an analogy, or the
system may be able to infer it from an examination of the data. In
this case, the hierarchy abstraction is appropriate, and there are
several appropriate simulation structures. One of these is shown in
figure 2. Each object in the universe is represented as a “cons” cell
in which the “car” points to the object’s parent. The relation (here
called Rel) is just the transitive closure of the Car relation, and Nil
is the root. For the purposes of this example, the “cdr” of each
cell may be ignored.

,++$$yj&$$
Figure 2 - A Simulation Structure for the Hierarchy Abstraction

An important requirement for a simulation structure is that it be
modifiable. Therefore, it must include actions that the model
builder can use in encoding knowledge of the task domain.
Usually, this requires the ability to create new objects and to
achieve relations among them. In this case, the Neons subroutine
creates a new object, and Rplaca changes an object’s parent.

Part of the task of finding an appropriate abstraction and
simulation structure is setting it up for use in encoding knowledge
of the task domain. This includes three kinds of information. The
first is an index so that the system can determine the simulation
structure appropria‘tt: to a new assertion. (This index is necessary
since several domains and simulation structures may be in use
simultaneously). Secondly, there must be a procedure for mapping
each assertion into its corresponding assertion about the simulation
structure. And, finally, the system must have information about
how to achieve the new assertion.

Once the simulation structure is chosen and set up, the
system builder can begin to assert facts about the task domain, and
the system will automatically modify the simulation structure. As
an example of this procedure, consider how the system would
handle the assertion of the fact (Boss-of Carleton Bertram). First,
it would use its index to determine that the simulation structure of
figure 2 is being used and to recover the mapping information.
‘I’hcn it would map the assertion into the simulation domain. In
this cast, let’s say that Arthur is the boss of Bcrtrm and lhdrice
while Carleton has been installed in the model as Ileatrice’s
employee. Then the new assertion would bc (He1 ((Nil)) (Nil)),
where the first argument is the object rcprcsenting Carleton and
the second represents Bcrtram. By examining the mcta-level
information about the simulation structure, the system retrieves a
canned proccdurc (Rplaca) for achieving this fact and cxecutcs it,
with the result that Carleton’s “car” is redirected from Bcittr!.ce to
Bcrtram.

An intcrcsting aspect of model building is that complete
information is often required. For example, in adding a node to
the simulation structure of figure 2, the system must know the
object’s parent in order to succeed. (It has to put something in the
“car” of the cell.) This problem can sometimes be handled by the
addition of new objects and relations that capture the ambiguity.
For example, one could add the special token Unknown as a place
filler in the simulation structure above. (Of course, the resulting
structure would no longer be a hierarchy.) Another example is
using the concept of uncle as a union of father’s brother and
mother’s brother. Unfortunately, this approach increases the size of
the model and makes deductions more difficult. Unless there are
strong properties associated with such disjunctive concepts, it is
usually better to carry the ambiguity at the meta-level (i.e. outside
the model, in the neutral language of the knowledge representation
system) until the uncertainty is resolved.

Another interesting aspect of the use of simulation structures
is the automatic enforcement of the axioms of the abstraction. For
example, in the simulation structure of figure 2, it is impossible to
assert two parents for any node simply because a “cons” cell has
one and only one “car”. Where this is not the case (as when a
simulation structure is drawn from a more general abstraction), thy
axioms can still be used to check the consistency and completeness
of the assertions a system builder makes in describing his task
domain. For example, if the system knew that a group of
assertions was intended to describe a hierarchy, it could detect
inconsistent data such as cycles and incomplete data such as nodes
without parents.

3.2 Designing a Simulation Sfructure for an Abslraclion

The only essential criteria for simulation structures are
representational adequacy and structure appropriate to their
abstractions. For every assertion about the task domain in the
language of the abstraction, there must be an assertion about the
simulation structure; and the structure must satisfy the axioms of
the abstraction.

In creating a simulation structure, one good heuristic is to
try to set up a homomorphism. Sometimes, the objects of the
simulation structure can be used directly, as in the case of using
“cons” cells to represent nodes in a hierarchy. In the example
above, the mapping of objects from the corporation domain into
the domain of list structure was one-to-one, i.e. the corporate
objects were all rcprcsentcd by distinct pieces of list structure, and

209

the relations and actions all mapped nicely into one another. Of
course, this need not always be the case. Consider, for example,
the state vector representation of the Blocks World proposed by
McCarthy, in which the Supports relation bctwccn each pair of
blocks is represented by a distinct bit in a bit vector. (Think of the
vector as a matrix in which the Ci, jxh bit is on if and only if
block i is on block J). In this representation the fact (Supports A
B) would translate into something like (On Bit-AR Vector-l), and
theie would be no distinct representations of the blocks A and B.

In other cases, more complex objects may be ncccssary in
order to provide enough relations. When a domain does not
provide an adequate set of relations, it’s a good idea to synthesize
complex structures from simpler ones. For example, a simulation
structure’ for an abstraction with three’ binary relations could be
built in the list world by representing objects as pairs of “cons”
cells in which the “car” represents the first relation, the “cd?
points to the second cell, the “cad? represents the second relation,
and the,“cddr” represents the third. This approach is facilitated by
programming languages with extensible data structures.

Obviously, it pays to economize by using the prcdefined
relations of the simulation domain where possible. For example, a
good representation for a univariate polynomiat is a list of its
coefficients, and one gets the degree of the polynomial for free (the
length of the list minus 1). One advantage is representational
economy; another is automatic enforcement of the abstraction’s
axioms, as described in the last section.

In order to use a simulation structure, it may be necessary
to transform objects into a canonical form. For example, one can
represent a univariate polynomial as a list of coefficients, but the
polynomial must be in expanded form. There is a large body of
literature on canonical forms for specific algebraic structures, while
[Genesereth 791 gives a general but weak technique for inventing
such forms directly from an abstraction’s axioms.

In using a simulation structure, there is a tradeoff betweeh
the amount of work done by the model and the amount done by
the knowledge representation system. For example, in the
simulation structure of figure 2, one must loop over the parent
relation to determine whether two objects are related. This can be
done either by the knowledge representation system or by a L'ISP
procedure in the simulation structure. Obviously, it’s a good idea
to have the simulation structure do as much work as possiblq,

3.3 Interfacing Simulation Stniclures

For most interesting task domains, the chances are that a
single simulation structure is not sufficient. In such cases, it is
sometimes possible to piece together several different simulation
structures. The simplest situation arises when the objects of the
task domain form a hierarchy under the “part” relation. Then one
can choose one representation for the “topmost” objects and a
different representation for the parts. The spirit of this approach is
very similar to that of “object-oriented” programming in which
each object retains information about how it is to be processed.’
One disadvantage of this approach is that each object must have
explicit “type” information stored with it. Barton, Genesereth,
Moses, and Zippel have recently developed a scheme that
eliminates this need by separating the processing information from
each object and passing it around in a separate “tree” of
operations. ANALOG uses this schcmc for encoding the operations
associated with each simulation struct’ure.

Task domains with several relations are sometimes
decomposable into several abstractions, and these relations can then
be represented independently. More often the relations are
interdependent; and, when this is the case, the interdependence
must be dealt with in the uniform representation,

Even when a single abstraction would fit the task domain, it
may be advisable to use several. Consider, fw .example, a partial
order that nicely decomposes into two trees. Furthermore, there
are often advantages to multiple representations of objects, as
argued by Moses [Moses].

4. Thinking With Abstractions and Simulation S@uclures

The USC of specialized simulation structures gives ANALOG
an economy and efficiency not possible with a uniform
representation. The economy can be expressed in terms of the
space saved by representing assertions in the simulation structure
rather than the uniform representation. This economy derives from
the elimination of the overhead inherent in uniform formalisms
and the use of relations implicit in the simulation structure (as the
length of a list reflects the dcgrce of the polynomial it represents).
The efficiency refers to the time involved in doing dcd*:rtions and
solving problems. This efficiency may be attributable to clever
algorithms, or it may be the result of long familiarity with the
domain from which the abstraction evolved (due to the memory of
many special case heuristics). Lenat [Lenat et. al.] discusses how a
computer might improve its own performance by self-monitoring.

An interesting pos,*bility suggested by this economy and
efficiency is for the program to use these criteria in evaluating
plausible hypotheses about a new domain. In the face of
incomplete or contradictory data, the program should favor the
more economical abstraction. Clearly, there is some evidence for
this sort of behavior in human cognition. Consider, for example,
Mendeleev’s invention of the periodic table of the elements. He
was convinced of the correctness of the format in spite of
contradictory data, for reasons that can only be identified as
simplicity.

These criteria of economy and efficiency are also of use in
characterizing why it is easier to solve problems from one point of
view than another, e.g. proving a theorem using automata theory
rather than formal grammars. Part of what makes causal
arguments (see [deKleer] for example) so compelling is that they
are easy to compute with. The reason for this is that a causal
argument is an instance of a cognitively efficient abstraction,
namely a diicctcd graph. One is tempted, therefore, to generalize
dcKleer’s notion of causal envisionment as finding economical and
efficient abstractions (perhaps identified with analogies) in which
the desired conclusions are reached via simple computations.

The idea can be carried a bit fUrther and generalized to
include the criterion of problem solving power. In particular, one
should favor an abstraction for its ability to solve a pending
problem despite insufficient data. The obvious difficulty is that the
assumption may bc wrong or there may be scvcral abstractions that
are equally probable and useful. Consider, for example, the
following arguments for determining the distance between the
observer and the middle vertex of a Necker cube. “Well, the lines
form a cube, and so the middle vertex must be closer to me than
the top edge.” “No, not at all, the figure is concave, and so the
middle vertex must be filrther away.” Both arguments are
consistent with the data and refer to a single abstraction, 2nd in
each case the conclusion is deductively related to that view. A
second example is evident in the particulate-wave controversy. The
particulate view is a simple abstraction that accounts for much of
the data and allows one to solve outstanding problems. Of cours6,
the same can be said for the wave view. Unfortunately, the
predictions don’t agree. A similar argument explains the inferential
leap a child makes in declaring that the wind is caused by the trees
waving their leaves. When the child waves his hand, it makes a
breeze; the trees wave when the wind blows; so they must have
volition and motive power; and that would account for the wind.

The reasoning in these examples is usually termed
“analogical”. The key is the recognition of a known abstraction
common to the situations being compared. This conception of
analogy differs markedly from that of Hayes-Roth and Winston.
In their view two situations are analogous if there is any match
between the two that satisfies the facts of both worlds. If the
match is good, the facts or heuristics of one world may be
transferred to the other. The problem is that these facts may have
nothing to do with the analogy. Just because two balls are big and
plastic, one can’t infer because one ball is red that the other is also
red. Abstractions are ways of capturing the necessary
interdependence of facts. For example, the size and material of a
ball do affect its mechanical behavior, and so the skills usefU1 for

210

bouncing one should be of value in bouncing the other. Also notL
that the match need not be close in order for there to be a useful
analogy. Linnaean taxonomy and organization charts have few
superficial details in common, but the analogy is nonetheless
compelling, and as a result the algorithms for reasoning about one
can bc transferred to the other. The work of Hayes-Roth and
Winston is, however, applicable where no abstractions exist yet.
Their matching algorithms and the techniques of Buchanan,
Mitchell, Dietterich and Michalski, and Lenat should be important
in inducing new abstractions.

An important consumer for these ideas is the field of
computer-aided instruction. There is a current surge of interest in
producing a “generative theory of cognitive bugs” (see [Brown],
[Genesereth 80a], and [Matz]). The use of abstractions and the
criteria of economy, efficiency, and power in theory formation is
very seductive in this regard. Unfortunately, there is no reason to
believe that the hardware of a vonNeumann computer in any way
resembles the specialized capabilities of the human brain. (Indeed,
psychologists are still debating whether there are any analogical
processes in the brain at all. See, for example, [Kosslyn &
Pomerantz], [Kosslyn & Schwartz], pylyshyn], and [Shepard &
Metzler].) Thus, the idea at present is not so much a model for
human cognitive behavior as a metaphor.

5. Conclusion

The ANALOG system was dcvclopcd over a period of time to
test the ideas presented here. One program accepts an analogy and
infers the appropriate abstraction; another builds a model of the
task domain as assertions are entered; and a third uses the model
to answer questions. There is a sketchy implementation of the
simulation structure designer, but no effort has been made to build
the theory formation program.

In summary, the key ideas are (1) the role of abstractions in
understanding metaphors and selecting good models for task
domains, (2) the use of’ models to acquire economy, efficiency, and
problem solving power, and (3) the-importance of these criteria in
theory formation. Abstractions and simulation structures make for
a knowledge representation discipline that facilitates the
construction of powerful, efficient AI programs. The approach
suggests a program for much future work in AI and Computer
Science, viz. the identification of us&11 abstractions and the
implementation of corresponding simulation structures that take
advantage of the spccia! computational characteristics of the
vonNeumann machine and its successors.

Acknowledgemenfs

The content of this paper was substantially influenced by the author’s
discussions with Bruce Buchanan, Rick Hayes-Roth, Doug Lenat, Earl Sacerdoti,
and Mark Stefik, though they may no longer recognize the ideas. Jim Bennett,
Paul Cohen, Russ Greiner, and Dave Smith read early drafts and made significant
suggestions to improve ‘he presentation.
grants from ARPA, NLM, and ONR.

The work was supported in part by

References

Balzer. R. Automatic Programming, Institute Technical Memo,
Southern California/ Information Sciences Institute, 1973.

University of

Barstow, D. R. Knowledge Bused Program Construction, Elsevier North-Holland,
1979.

Brown, J. S. & vanlehn, K. forthcoming paper on learning.

Buchanan, B. & Feigenbaum. E. A. Dendral and Meta-Dendral: Their
Applications Dimension, Arfificial InteUigence, Vol. 11, 1978, pp 5-24. .

deKleer, J. The Origin and
of the Sixth International
197-203.

Resolution of Ambiguities in Causal Arguments, Proc.
Joint Conference on Artificial Intelligence, 1979. pp

Hayes-Roth, F. & McDermott An Interference Matching Technique for Inducing
Abstractions, Comm of rhe ACM, Vol. 21 No. 5. May 1978. pp 401-411.

Genesereth. M. R. A Fast Inf&ence Algorithm for Semantic Networks, Memo 5,
Mass. Inst. of Tech. Mathlab Group, 1976.

Genesereth, M. R. The Canonicality of Rule Systems, Proc. of the 1979
Symposium on Symbolic and Algebraic Manipulation, Springer Verlag, 1979.

Genesereth, M. R. The Role of Plans in Intelligent Teaching Systems, in
Inrclligent Teaching Systems, D. Sleeman, ed. 1980.

Genesereth, M. R. & Lenat, D. B. Self-Description and Self-Modification in a
Knowledge Representation System, IIPP-880-10. Stanford University Computer
Science Dept., 1980.

Green, C. C. The Design of the PSI Program Synthesis System, Proc. of the
Second International Conference on Software Engineering, Oct. 1976, pp 4-18.

Greiner, R. D. & Lenat, D. B. A Representation Language Language, submitted
for inclusion in the Proc. of the First Conference of the American Association for
ArtiIicial Intelligence, Aug. 1979.

Kant, E. Efficiency Considerations in Program Synthesis: A Knowledge Based
Approach, doctoral dissertation, Stanford Univ. Computer Science Dept., 1979.

K_ohler. W. Ges!nJc P.weholnPv: An Introduction to New Concepts in Modem
Psychology, Liveright, 1947.

Kosslyn, S. M. & Pomcrantz. J. R. Imagery, Propositions, and the Form of
Internal Representations, Cognifive Psychofogy, Vol. 9 No. 1, 1977, pp 52-76.

Kosslyn, S. M. & Schwartz, S. P. A Simulation of Visual Imagery, Cosnitive
Science, Vol. 1, 1977, pp 265-295.

Kuhn, T. The Structure of Scientific Revolutions, Univ. of Chicago Press, 1962.

Lenat, D. B. Automated Theory Formation in Mathematics, Proc. of the Fifth
International Joint Conference on Artificial Intelligence, 1977, pp 833-842.

Lenat, D. B., Hayes-Roth, F., Klahr. P. Cognitive Economy in Artificial
Intelligence Systems, Proc. of the Sixth International Joint Conference on
Artificial Intelligence, 1979. pp 531-536.

Low, J. R. Automatic Coding: Choice of Data Structures, ISR 15. Birkheuser
Verlag, 1976.

Matz, M. A Generative Theory of High School Algebra Errors, in Intefligenf
Teaching Systems, D. Sleeman. ed. 1980.

McCarthy, J. Finite State Search Problems, unpublished paper.

Minsky, M. A Framework for Representing Knowledge, in The Psychology o/
Computer Vision, P. H. Winston, ed., McGraw-Hill, 1975.

Mitchell, T. Version Spaces: A Candidate Elimination Approach to Rule Learning,
Proc. of the Fifth International Joint Conference on Artificial Intelligence. 1977.

Moore, J. & Newell, A. How can MERLIN Understand, in L. W. Gregg, ed.
Knowledge and Cognition, Lawrence Erlbaum, 1974.

Moses. J. Algebraic Simplification: A Guide for the Perplexed, Comm of rhe
ACM, Vol. 14 No. 8, 1971, pp 527-537.

Pylyshyn. Z. W. What the Mind’s Eye Tells the Mind’s Brain: A Critique of
Mental Imagery, Psychological Bullerin, Vol. 80, 1973, pp l-24.

Schank. R. & Abelson, R. Scripts, Plans, and Knowledge, Proc. of the Fourth
Internatylonal Joint Conference on Artificial Intelligence, 1975, pp 151-157.

Shepard, R. N. & Metzler, J. Mental Rotation of Three-dimensional Objects,
Science. Vol. 171, 1977, pp 701-703.

Thorndyke, P. W. & Hayes-Roth, B. The Use of Schemata in the Acquisition and
Transfer of Knowledge, Cognifive Psyckology Vol. 11, 1979, pp 82-106.

Weyhrauch, R. Prolegomena to a Theory of Formal Reasoning, STAN-CS-78-687,
Stanford Univ. Computer Science Dept., Dec. 1978.

Winston, P. H., Understanding Analogies, Mass. Inst. of Tech. Artificial
Intelligence Laboratory, Apr. 1979.

Dietterich, T. G. & Michalski, R. S. Learning and Generalization of Characteristic
Descriptions: Evaluation Criteria and Comparative Review of Selected Methods,
Proc. of the Sixth International Joint Conference on Artificial Intelligence. 1979,
pp 223-231.

211

