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ABSTRACT

Some general and specific ideas are advanced about
the design and implementation of causal monitoring
sttems for complex sites such_as a nuclear power
plant or NASA missions control room. Such "causal
monitors” are interesting from both the theoretical

and engineering viewpoints, and would greatly
improve existing man-machine interfaces to complex
systems.

INTRODUCTION

Human understandin% of a large complex
physical facility, such as a NASA mission control
room or a nuclear power plant, is often a haphazard

affair, Traditionally, once a site is built,
knowledge about it "resides in technical manuals
(which tend to sit on the shelf) and in the minds

of the experts., As technical staff turnover occurs
over an extended period of time, this knowledge
tends to get misplaced, rearranged, or altogether
forgotten, at east as daf—to—day working
knowledge. The result is wusually that no single
individual fully appreciates or understands the
system as a whole; the operators learn simply to
cope with it to the extent required for daily
operations and maintenance. Of course, this means
that when an emergency occurs, or when need arises
to perform some unusual maneuver, the required
human exgertise is often hard to locate. Manuals on
the shelf are virtually worthless in most contexts,
especially those in which time is critical. Even
when the expert is on the site, it may take him too
1on% to perceive the context of an emergency and
perform the synthesis of a large set of parameters
necessary to diagnose the problem.

Given this state of high technology, which
produces systems too deeplg or broadly complex for
an individual or reasonably sized group of
indiyiduals to ,comprehend, there is a clear need
for "intelligent” secondary systems for monitoring
the primary systems. To develop such intelligent
systems, we need (1) flexible representations for
physical causality, (2) good human interfaces that
accept descriptions of the physical world and build
descriptions in these representations, (3) models
of "comprehension” that are capable of relating the
myriad states of the site to the causal
description, then passing along only relevant and
important information to the human operators, and
( fast, efficient symbolic computation
environments to support items 1-3 in real time.

CAM (Causal
to develop a
of intelligent,

This paper briefly describes the
Monitor) Project, whose aim is
framework for the construction
causally-based real—-time monitors for arbitrary
physical sites. The project is wunder current
funding by NASA Goddard Space Flight Center, and
will result in a prototype causal monitor generator

system. Our aim here is to_advance some specific
ideas about the conceptual architecture of such a
system. Background ideas on the concept of causal

models for man—made devices can be found in {6].

* The research described here is funded by NASA.
Their support is gratefully acknowledged.
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GOALS

An ideal causal monitoring system does not
replace humans, but rather extends and broadens
their abilities to process information, an
enhances their ability to collect and synthesize
relevant information in time critical situations.
The ideal system would apgear to the human
controllers as a small number of color CRT displays

and a keyboard. The system would

1. continually sense and symbolically
characterize all sensors in "a way that
reflected their relative importance and

acceptable ranges in the current operating

context

2. continually verify that causally related
sensor groups obey symbolic rules
ex ressinﬁ the nature of their causal
relationship

be aware of the human operator’'s expressed
intent (e.g., "running preventative
maintenance check 32", “executing mornin
power—up”) and adjust causal relations an
expectations and lower—level parametric
tolerances accordingly

have a knowledge of component and sensor
failure modes and limit violations, their
detectable precursors, their indicators,
their probable causes, and their
corrective procedures (both in the form of
automatic correction algorithms and
recommendations to the human)

"maneuvers"”,
with
(for

an

have a knowledge of standard
expressed as action  sequences
stepwise confirmable consequences
bot automatic execution and
archival reference for the human)

continually  synthesize all
aspects of the system and from this
synthesis, identify which aspects of the
system to display to the human controllers
(in the absence of specific requests from
the humans)

as

important

7. decide on the most appropriate screen
allocation and display technique for each
piece of information "under the current
context

Most procedural knowledge about the primar{ system
would be on—-line, and in a form meaningful to” both
the human and the computer. The system would play
the role of intelligent watcher continually
monitoring hundreds of sensors and reiating them to
the causal model for the current ogerating context,
The system would summarize the site's state via
well-managed CRT displays, and would be capable not
onlg of detecting irregularities and suggesting
probable causes, consequences and corrective
measures, but also of automatically carrying out
both routine and emergency corrective measures when

given the go—ahead bg the human controller. The
physical site would be "self aware” in some limited
sense.



In the CAM Project we are concerned not with
modelin§ a specific site, but rather with
developing a general-purpose model that can be
imported to any site. Once there, it will interact
with the site experts as they define the site's
causal structure via an interactive, frame-driven
system, From the results of this knowledge
acquisition phase, the specific site CAM
generated.,

The CAM generator system consists of several
pieces:

1. A collection of frame-like knowledge units
that collectively span all aspects of
virtually any ghysica site. At present we
incorporate frame types: Sensor,
Actuator, Component, FailureMode,
ActionStep, Maneuver, OperatingContext,
DisglayPacket, OperatorIntent. Others
will emerge as the project progresses.

acquisition

ARCHITECTURE OF THE CAM GENERATOR SYSTEM

A collection of procedures for interacting
with site engineers and scientists who
will interactively describe the site by
filling in frames. This interface is
semi-~active in that it ensures that
relevant information (structured by the
frames) 1is elicited in a methodical way
from the site engineers. The information
compiled by the frame—-driven interface
results in a collection of data objects
and production rule-like knowledge about
their interrelationships.

A collection of display primitives and

display handling techniques

A collection of primitive sensor—-reading
and actuator-driving schemata (i.e., code
schemata)

A system for compiling the production rule
description of the site onto an efficient
lattice—~like data structure that obviates
most run—time pattern matching

A run—time
coordinatin§
causal mode

maintenance system for
the real time of the symbolic
monitor.

The frames and the of the

interface

nature

remainder of

the architecture

real-time monitor sg:tem, which we have termed

Propagation Driven

from

cannot tolerate much
the basic machine cycle.
Eattern matching, we base our machine on a form of
ependency lattice

described” in [1], [2],[4], and [5].
such a scheme is to represent antecedent-consequent
relations bg a

forward and backward reasoning.

graph whose

some
value

condition in

netwo
real

seque
PDﬁ are connected by Above and Below links,
reflect computational dependencies among nodes. For

example, 1f node NI represents knowledge of the

form iA and B and C) causes D, then in the PDM net

D wild EﬂboVé_Nl, amt NI will be Above each of A,
, and C.

chine (PDM).

PROPAGATION DRIVEN MACHINES

CAM will require an extremely high
its  runtime system. For that
eneral Eattern matchin

To eliminate the nee

similar in structure to

graph; this is wuseful

The central data structure of the
nodes
parameter or proposition
of sensor 23 is X", "there
chamber  197).
rk nodes are the primitive sensor readers

time clocks whose spontaneous
nces all propagation in the net.

PDM is

(e.g., "the

knowledge
: are described in [3]. Since
the real-time efficiency of the generated system is
a critical issue, we devote the

discussion here to of the CAM

throughput
reason, we

those
The essence of

in both

represent the current value of
current
s_an overpressure
The lowest level PDM
and
ticking
Nodes in the
which
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Computation in the network resembles that
performe: in a dependency net: when the value of
any PDM node changes, all nodes Above it are placed
on the agenda for reevaluation. The effect 1is to
have data-driven computaions percolating up from
changes in the clocks and sensors at the bottom of
the = net. Hence the name "propagation driven
machine,

Specifically, PDM control goes as follows.
Initiagly the PDM net is empty (or relatively so).
Some event in the model (e.g., operator start-up,
the computation at a node iIn the net) identifies a
rule set, R, that deals with some aspect of the
modeled environment, e.g., the rules that describe
the causal relationships in the Main  Chamber
Pressure System. Rules in this set are then queued
on the PDM agenda Q from which they will all
eventually be removed and evaluated.

An important PDM concept is structural
augmentation of the network as a natural byproduct
of 'a node's evaluation: evaluation of a newly
gueued rule causes the rule to be structurally knit

nto the PDM network. During a node's evaluation,
any exgressions not alreadf present in the net are
created as new net nodes, linked to the referencing

expression’'s node via Above links, and placed in %
for expansion themselves. This process o
"downward chaining” structurally introduces the
rule into the PDM net,

Once installed by downward chaining, the
rule's value will begin to receive constant PDM

evaluation via "upward chaining"”: changes in 1lower
nodes' values in the net will propagate upward
throuﬁh this structure, causing higger nodes to be
reevaluated. Nodes subject to reevaluation by this
mechanism are queued on Q. By using the same queue
for both structural integration of rules into the
current context and for the fropagation of actual
values, the PDM scheme allows a graceful and
dgnamic context-shifting mechanism. Also, it
obviates the need for most run-time pattern
matching.

To illustrate, suppose some node's evaluation
has called for a rule set for monitoring the degree
of openness of Relief-Valve-14 (RV-14 to be
swapped in. The PDM system will, say, then queue up
and evaluate (among others) a rule, RI, for
comparing the osition of RV-14 against the

ressure of Pipe-14 (PP-14). This leads to a

nitting process: Rl 1looks for RV-14 and PP-14
sensing or inferencing rules (nodes in the net) and
finds neither. As a result, rules for determinin

RV-~14's position and PP-14's pressure (say R2 an

R3) are queued, evaluated, and also knit into the
PDM net. Now in the net, when changes Below R2 and
R3 proga%ate to either of these two nodes, Rl is
requeue or evaluation via upward chaining, this
Time performing the actual comparison and computing

a real value for the Rl node., This may in turn
trigger a higher node, e.g., a _display rimitive
for communicating the results to the human

operators.

This dual-purpose use of the PDM queue, namely
for staking out the net structure an for
performing “computations by propagation of changes
in net node values, makes for a topologically
dynamic system. As parts of the net are propagating
values upward other parts of the net may be
sprouting, while others are atrophying (and being
garbage collected). The system 1is essentially a
compiled production rule system, but one in which
“"compilation” is as dynamic as the propagation of
values. Rule sets can come and go as naturally as
values can be changed.

Semantically, the 1lowest nodes of the PDM
network, and those that are present initially, are
spontaneously ticking real-time clocks whose Above
pointers go to sensor-reading nodes. Additionally,
certain basic monitoring expressions are
represented by nodes initially in the net. As the

"caretaker” rules (net
not yet
of the net, queuing them up.’ As
these references come to be ‘evaluated, their
evaluation draws them into the PDM net, where they
begin to participate in the monitoring process.

site's state changes, these
nodes) will make reference to other rules
structurally part



When the context shifts in a way that causes the
caretaker node to be uninterested in the paged—-in
rule set, the caretaker node drops its reference to
the rule set, effectively cutting the Below link
between itself and the top members of the rule set.
Nodes with no Above pointers and which are not
marked as “permanent” are subject to PDM %arba%e
collection. Garbage collection is effectively the
inverse of the original downward chaining that knit
in the rule set and structurally removes the

entire rule set by’following Below pointers.

SUMMARY

A CAM generator system is a special tyge of
knowledge acquisition system whose domain 1is
causality in large, complex physical sites. It
requires’ (1) models of knowledge elicitation from
the site experts, (2) frame-like models of the
concepts commorn to all physical sites and their
causal topology, and (3) an efficient, yet flexible
en§ineering solution to the problems of controlling
a large symbolic system of production rule-like
knowledge” in real time. The PDM model appears to
be a realistic approach to real—-time monitoring: it
exhibits the breadth and thoroughness of a
classical production rule system, but without the
usual problems of pattern matching and database
maintenance.

The area of data driven real-time causal
models of comglex physical sites appears to be a
very fertile an largely wunexplored area of AL
research. Research in this area will help bring the
following areas of AI closer together: frame—-based
systems, knowledge acquisition, causal modeling,
and efficient implementation techniques for
real-time symbol manipulation. The domain is
manageable because we are modeling systems in which
deep problem solving is not a ey 1issue, and
theoretically interesting because of its
breadth-wise complexity.
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