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Abstract 

Research was undertaken with the goal of applying general 
universally-applicable induction methods to complex real-world 
problems. The goal was only partially met. The chosen 
domain-the card game Eleusis-was still somewhat artificial, and 
the universally-applicable induction methods were found to be 
lacking in important ways. However, the resulting Eleusis program 
does show that by using knowledge-based data interpretation and 
rule evaluation techniques and model-fitting induction techniques, 
general induction methods can be used to solve complex problems. 

Introduction 

Work in the area of computer induction is characterized by a 
continuum from general, universally-applicable methods [5, 6, 7, 9, 
10, 121 to specific, problem-oriented methods [2, 8, 111. The 
general-purpose methods have been criticized for lacking the power 
to operate in real-world domains. Problem-oriented methods have 
been criticized for being too specialized to be applied to any 
problems outside their original domains. This paper describes an 
attempt to bridge this gap by applying general-purpose induction 
algorithms to the problem of inducing secret rules in the card game 
Eleusis. Further details are available in [3]. 

A Program for Eleusis 

Eleusis (developed by Robert Abbott [l, 41) is a card game in which 
players attempt to induce a secret rule invented by the dealer. The 
secret rule describes a linear sequence of cards. In their turns, the 
players attempt to extend this sequence by playing additional cards 
from their hands. The dealer gives no information aside from 
indicating whether or not each play is correct. Players are penalized 
for incorrect plays by having additional cards added to their hands. 
The game ends when a player empties his hand. 

A record of the play is maintained as a layout (Figure 1) in which 
the top row, or mainline, contains all of the correctly-played cards in 
sequence. Incorrect cards are placed in side lines below the main 
line card which they follow. 

mainline: 3H QS 4C JD 2C 10D 8H 7H 2C 5H 
sidelines: JD AH AS IOH 

5D 8H 10s 
QD 

Rule 1: “If the last card is odd, play black, if the last card is even, 
play red.” 

Figure 1. Sample Eleusis Layout (after El]). 

This research sought to develop a program which could serve as an 
intelligent assistant to a human Eleusis player. The program needed 
to be able to: 

) discover rules which plausibly describe the layout, 

) accept rules typed by the user and test &hem against the 
layout, 

) extend the layout by suggesting cards to be played from the 
player’s hand. 

Although Eleusis is artificial and noise-free, it is sufficiently complex 
to provide a reasonable test bed for inductive techniques. The 
development of an intelligent assistant required not only basic 
induction methods but also extensive deduction techniques for 
testing rules and extending the layout. 

Problems with Existing Induction Methods 

While designing the rule-discovery portion of the Eleusis program, 
existing induction algorithms [5, 6, 7, 9, 10, 121 were examined and 
found to be lacking in three fundamental ways. The first major 
problem with some of these algorithms is their emphasis on 
conjunctive generalizations. Many Eleusis rules are disjunctive. For 
example, Rule 1 can be written as: 

tli {odd(cardi-1) A black(cardi) V even(cardi-1) A red(cardi)} 

The second major problem with these algorithms is that they make 
implicit assumptions concerning plausible 
generalizations-assumptions which are not easily modified. Of the 
algorithms examined, only Mitchell’s version space algorithm [lo] 
maintains information concerning all rules consistent with the data 
(and his algorithm is still oriented toward conjunctive 
generalization). The algorithms of Hayes-Roth and Vere both seek 
the most specific rule consistent with the data, while Michalski’s Aq 
algorithm seeks a disjunctive description with the fewest conjunctive 
terms. 

In contrast, the plausibility heuristics for Eleusis are: 

Choose rules with intermediate degree of generality. 
(Justification: the dealer is unlikely to choose a rule which is 
overly general because it would be too difficult to discover. 
Conversely, overly specific rules are easily discovered because 
they lead to the creation of numerous counter-examples 
during play.) 

Choose disjunctive rules based on symmetry. (Justification: 
Rule 1 is an excellent example of a symmetric disjunctive 
rule. Most often in Eleusis, the terms of a disjunction define 
mutually exclusive cases which have some symmetric 
relationship to each other. The dealer is very likely to choose 
such rules because they are not too hard-nor too easy--to 
discover.) 

(These plausibility heuristics are based on the assumption that the 
dealer is rational and that he is attempting to maximize his own 
score (according to the rules of the game). This is an artificial 
assumption. It is very rare in science that we have such insight into 
nature. However, in all domains plausibility criteria must be 
available-otherwise, we don’t know what we are searching for.) 

The third major problem with using general-purpose induction 
techniques in Eleusis is that the raw data of the Eleusis layout are 
not in a form suitable for generalization. (Many researcliers [2, 111 
have pointed out this problem in other domains.) One aspect of this 
problem is evident in Rule 1: neither color nor parify is explicit in 
the representation of the cards. Another difficulty is that the 
sequential ordering of the cards is implicit in their position in the 
layout. It must be made explicit in order to discover rules like Rule 
1. 

Two techniques were developed to address these problems. First, in 
order to avoid an exhaustive search of rule space and at the same 
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time avoid the “tunnel vision” of existing algorithms, rule models 
were developed to guide the induction process. Secondly, in order 
to transform the input data info a form appropriate for 
generalization, a series of knowledge-based processing layers were 
created. 

Induction by Model-Fitting 

By analogy with traditional statistical time-series analysis, the 
program uses a model-fitting approach to induction. The term 
model denotes a syntactic or functional skeleton which is fleshed out 
by the induction algorithms to form a rule. In traditional regression 
analysis, for example, the model is the regression polynomial whose 
coefficients must be determined by induction from the data. 
Properly chosen models can strongly constrain the search required 
for induction. After looking at several Eleusis games, the following 
models were designed for the Eleusis program: 

B Decomposition. This model specifies that the rule must take 
the form of an exclusive disjunction of if-lhen rules. The 
condifion parts of the rules must refer only to cards prior to 
the card to be predicted. The action parts of the if-then 
rules describe correct plays given that the condition parts are 
true. The condition parts must be mutually exclusive 
conjunctive descriptions. The action parts are also 
conjunctions. Rule 1 fits the decomposition model: 

Vi odd(cardi-1) * black(cmdi) V 
even( cardi- 1) =P red(cardJ 

) Periodic. A rule of this model describes the layout as a 
periodic function. For example, Rule 2 (Figure 2) is a 
periodic rule. The layout is split into phases according to 
the length of the proposed period. The periodic model 
requires that each phase have a conjunctive description. 

JC 4D QH 3s QD 9H QC 7H QD 9D QC 3H 
KC 5s 4s 10D 

7s 
M 

phase 0: JC QH QD QC QD QC 
5s 4s 1OD 
7s 

phase 1: 0 4D 3s 9H 7H 9D 3H 
KC 

Rule 2: (periodic rule with length 2): 
phase 0: Vi faced(cardi) 
phase 1: tli nonfaced(cardi) 

Figure 2. A Periodic Rule. 

) Disjunctive Normal Form (DNF) with fewest terms. The Aq 
algorithm (Michalski [9]) is used to discover rules which 
have the fewest number of separate conjunctions. The Aq 
algorithm was given heuristics to guide it towards 
symmetric, disjoint disjunctive terms. 

By definition, not all Eleusis rules can be represented using these 
three models. But, these models, when combined with segmentation 
(see below), cover all but one or two of the Eleusis rules which I 
have seen. 

For each of these models, an algorithm was developed to fit the data 
to the model. In order to fit the data to the decomposition model, 
the program must determine which variables to decompose on, i.e. 
which variables to test in the condition part of the rule (Rule 1 
decomposes on parity E {odd, even)). The program must also 
decide how far into the past this decomposition should apply (i.e. do 
we look at just the most recent card, or the two most recent cards, 
. . . . etc.). Once the decomposition variables and the degree of 
lookback are determined, the algorithe must find a conjunctive 
description for the action parts of the rules. 

The program uses a generate-and-test approach. First, it considers 
rules which look back only one card, then two cards, and so on until 
a rule consistent with the data is found. To determine the 
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decomposition variable(s), it generates trial rules by decomposing on 
each variable in turn and chooses the variable which gives the 
simplest rule. If the resulting rule is not consistent with the data, 
the layout is decomposed into sub-layouts based on the chosen 
variable, and a second decomposition variable is again determined 
by generating trial decompositions and selecting the simplest. This 
process is repeated until a rule consistent with the data is found. 
(This is a beam search with a beam width of 1). 

In order to fit the periodic model, the program chooses a length for 
the period, splits the layout into separate phases, and finds a 
conjunctive description of each phase. Since the rule is more 
plausible if the descriptions of each pha’se are mutually exclusive, 
the algorithm attempts to remove overlapping conditions in the 
descriptions of the different phases. Again, a generate-and-test 
approach is used to generate periodic rules with different length 
periods (from length 1 upwards) until an acceptable rule is 
discovered. 

The Aq aigorithm is used to fit dati to the DNF model. 

Knowledge-layer Structure 

Like many other AI systems, the Eleusis program is structured as a 
set of layers, or more accurately, rings, based on the kinds of 
knowledge used to solve the problem (Figure 3). Each layer takes 
input data from the outside, transforms the data using knowledge 
appropriate to this layer, performs generalization by searching the 
space of rules at this level of abstraction, and evaluates the obtained 
rules. Rules which are sufficiently plausible are returned to the 
outer layers. Each layer calls the inner layers to perform tasks 
requiring knowledge appropriate to those inner layers. Figure 4 
shows the five layers of the Eleusis program. Notice that in Eleusis, 
the outermost ring is very specific to Elcusis, while the inner-most 
rings contain only the general model-fitting induction algorithms. 
This design is intended to allow the program to be easily applied to 
similar problems. Since all Eleusis-specific knowledge is in the 
outer-most two layers, these could be stripped off and replaced by 
layers which apply different kinds of data transformations to solve 
different problems (e.g. letter series completion, sequence 
extrapolation). 

Figure 3. The Knowledge-layer Scheme. 

5 User Interface 
4 Eleusis KnowledPe , 

; 
Seg~ 
Sequential Analysis 

1 Basic induction 

Most Specific 

CL 
Most General 

Figure 4. Layered Structure of Eleusis Program. 

The five layers fiinction as follows. The outer-most layer provides 
an interface for the user. Layer 4 transforms the layout by making 
explicit such things as the color, parity, prime-ness, and faced-ness of 
the cards. Layer 3 segments the layout. Segmentation is used to 
discover rules such as Rule 3 (Figure 5) which involve first splitting 
up the layout into segments according to some criterion (like 
constant color) and deriving a new layout based on the lengths of 



these segments. Layer 2 makes the order of the events explicit [4] Gardner, Martin, “On Playing the New EIeusis, the game that 
either by creating “first difference” variables (e.g. Avalue(caQ = simulates the search for truth,” Scientific American, 237, 
value(c&$ - value(cardi_l)) or by breaking the layout into separate October. 1977, pp 18-25. 

phases (for periodic rules). The result of the preprocessing of layers 
5 through 2 is that layer 1 is called with a specific model for which 

[S] Hayes-Roth, F:; J. McDermotf “An Interference Matching 
Technique for Inducing Abstractions”, Communicufions of fhe 

the degree of Zookback and (optionally) length of period have been 
specified and with a set of unordered events to which the model is 
to be fitted. Layer 1 actually performs the model-fitting using one 
of the three model-fitting induction algorithms. 

Once the rules have been induced, they are passed back up through 
the layers for evaluation. Layer 2 evaluates the rules using 
knowledge about ordering (e:g. guaranteeing that the rule doesn’t 
lead to a dead end). Layer 3 checks that the rules are consistent 
with the scgmcntation it performed (in particular, the boundary 
values cause some problems). Layer 4 evaluates the rules according 
to the heuristics for plausible rules in Elcusis. Finally, layer 5 prints 
any rules which survive this evaluation process. 

ACM, 21:5, 1978, pp. 401-410. 

[6] Hunt, E.B.. Experiments in Induclion, Academic Press, 1966. 

f’7] Larson, J., “Inductive Inference in the Variable Valued 
Predicate Logic System VL21 : Methodology and Computer 
Implementation”, Rept. No. 869, Dept. of Comp. Sci., Univ. 
of III., Urbana, May 1977. 

[8] Lenat, D., “AM: An Artificial Intelligence Approach to 
Discovery in Mathematics as Heuristic Search,” Comp. Sci. 
Dept., Rept. STAN-CS-76-570, Stanford University, July 1976. 

191 Michalski. R. S., “Algorithm Ag for the Quasi-Minimal 
Solution of the Covering Problem,‘* Archiwum -Automafyki i 
Telemechaniki, No. 4, Polish Academy of Sciences, 1969 (in 
Polish). 

[lo] Mitchell, T. M., “Version Spaces: an Approach to Concept 
Learning,” Comp. Sci. Dept. Rept. STAN-CS-78711, Stanford 
University, December 1978. 

I AH 7C 6C 9s 10H 7H 1 OD JC AD 4H 8D 7C 
KD 6s QD 3s 

I JH 

I Rule 3: “Play odd-length strings of cards where color is constant 
within each string.” 

1 The segmenled layout looks like this (color, length): 
(red, 1) (black, 3)’ (red, 3) (black, 1) (red, 3) 

Figure 5. A Segmentation-based Rule. 

The program works well. The three rule models, when combined 
with segmentation, span a search space of roughly 1O183 possible 
rules (several control parameters affect the size of this space). The 
program generates and tests roughly 19 different parameterizations 
of the three models in order to choose three to five plausible rules. 
It runs quite quickly (less than seven seconds, on a Cyber 175, in 
the worst case so far). The rules developed are similar to those 
invented by humans playing the same games (15 complete games 
have been analyzed). 

Conclusion 
General induction techniques can be used to solve complex learning 
tasks, but they form only part of the solution. In the Eleusis 
domain, data interpretation, rule evaluation, and model-directed 
induction were all required to develop a satisfactory program, 

A degree of generality was obtained by segregating the functions of 
the program into layers according to the generality of the knowledge 
they required. This should allow the program to be applied to 
similar tasks merely by “peeling off’ and replacing its outer layers. 
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