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ABSTRACT 

This paper describes the design of a system 
that simulates a human student learning to prove 
tneorems in logic by interacting with a curriculum 
designed to teach those skills. The paper argues 
that sequences in this curriculum use instructional 
strateu, and that the student recognizgs these 
strategies in driving the learning process. 

I. INTRODUCTION 

A central issue in the design of learning 
systems (LS's) is the classification of the sources 
of information that the system uses for its 
acquisition. The general notion is that an LS 
begins with certain knowledge and capabilities, and 
then extracts information from training sequences 
or experiments in the acquisition process. 
Implicit within this general characterization is 
the idea that the LS enforces some kind of 
interpretation on the training sequence by way of 
driving the acquisition process. Often the nature 
of the interpretation is left implicit. An example 
of an LS that makes somewhat explicit the 
interpretation of its training sequence is 
Winston's program for learning structure 
descriptions, where the program interprets the near 
m example as providing key information about the 
structure being learned [lr]. 

We speculate that much human learning takes 
place in a more richly structured environment, 
wherein the human learner is interpreting the 
instructional seauences provided to him in a richer 
way than LS's typically envision. Indeed, most 
LS's nave made few if any explicit assumptions 
about the structure of the environment in which the 
training sequence occurs. One particularly rich 
environment is learning & teaching. We suggest 
that teachers use certain instructional strategies 
in presenting material, and that students recognize 
these strategies. 

This paper describes the motivation for an LS 
called REDHOT. REDHOT is a simulation of a student 
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acquiring the skill of constructing proofs in 
elementary logic. We characterize this skill as 
consisting of (1) primitive operators in the form 
of natural-deduction rules of inference, (2) "macro 
moves" consisting of several rules of inference, 
and (3) application heuristics that describe when 
to use the rules. The central theme of this 
research is to model the acquisition of these 
skills around the recognition of instructional 
strategies in a curriculum designed to teach the 
student. 

II. CURRICULUM FOR REDHOT 

We are using the curriculum from the computer- 
assisted instruction (CA11 course developed at 
Stanford University by Patrick Suppes and co- 
workers. (See [3] for details.) This CA1 system 
is used as the sole mode of instruction for 
approximately 300 Stanford students each year. We 
chose a CA1 curriculum because we thought that the 
explicitness inherent in a successful CA1 system 
developed and tested over a number of years might 
make the instructional strategies relatively clear. 

The curriculum contains explanatory text, 
examples, exercises, and hints. The explanatory 
text is rather large, and uses both computer- 
generated audio and display as modes of 
presentation. The presentation strategy used by 
the actual CA1 system is linear through the 
curriculum. For use with REDHOT, we have developed 
a stylized curriculum in an artificial language CL. 
It contains the examples, exercises, partially 
formed rules, and hints. 

The exercises are the central part of the 
curriculum. There are approximately 500 theorems 
that the student is asked to prove, with about 200 
in propositional logic, 200 in elementary algebra, 
and 100 in the theory of quantification. 

The human student performs these exercises by 
giving the steps of the developing proof to an 
interactive proof checker. This proof checker is 
the heart of the original instructional system. We 
developed a version of this proof checker for use 
with the REDHOT student simulation. 

III. THE DESIGN OF REDHOT 

REDHOT learns rules for proving theorems. 
These rules are initially the natural deduction 
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rules of many logic systems. The student improves 
upon these rules by building macro operators and by 
adding heuristics to existing rules--i.e., giving 
strategic advice in the left-hand-sides of the 
production rules.* 

For example, the rule AA ("affirm the 
antecedent", the system's version of modus ponens) 
can be stated as the following rule: 

Rule AA I 
GOAL: Derive Q I 
Prerequisites: f 

P already on some line i I 
P -> Q on some line j I 

Method: f 
AA command on lines i and j I 

Heuristics: None (yet) I 
Effectiveness: Perfect I 

In the above, we have adopted a style of rule 
presentation that is similar to the rules of a 
production system. The letters P and Q stand for 
arbitrary formulas, and i and j for arbitrary lines 
of the already existing proof. The aoal tells what 
the rule will produce. The mreauisites tell us 
that two formulas of the appropriate forms are 
needed, and the method gives the schematic command 
to the proof checker that will accomplish this. 
The heuristics associated with a rule are learned 
by the system, and indicate how the rule should be 
used. Effectiveness of the rule is also learned, 
and indicates how effective the rule will be in 
achieving its goal given its prerequisites. The 
effectiveness of this rule is "perfect" since the 
rule is given as such in the curriculum. 

The underlying problem solver for REDHOT is a 
depth-first, heuristic problem solving over the 
existing rules. It is assumed that: (a) the system 
has sufficient memory and CPU facilities for this 
search, if necessary; and (b) that the underlying 
pattern matchers are sufficient to match arbitrary 
formulas, line numbers, etc. Both of these 
assumptions are open to criticism on the grounds of 
being psychologically unrealistic. One of the 
goals of the construction of REDHOT is to decide on 
plausible ways to restrict the problem solver and 
pattern matcher to make a more realistic system. 

REDHOT learns the heuristics for the 
application of the rule. These heuristics are 
stated in a heuristic-language HL, which is 
strongly tied to the curriculum language CL. The 
heuristics associated with a rule guide the student 
as to when to try that rule or not to try it. 

For example, the curriculum appears to teach 
the student that the AA rule is a plausible thing 
to try when the prerequisites are available 
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(whether or not the goal is immediately desired). 
This is one of the primitives of the HL heuristics 
language. 

An example of a macro operator that is not a 
primitive rule is the "multiple AA" macro move. A 
paraphrase of this macro operator might be: 

I Multiple-AA Macro Move I 
I IF you want to prove Q : 
I AND I 
I have P, P -> P1, PI -> P2, . . . . Pn -> Q I 
: THEN I 
I make multiple AA applications, I 
I which is guaranteed to succeed I 

We discuss below t.he training sequence that teaches 
this macro move. 

IV. m RECOGNITION @ INSTRUCTIONAL STRATEGIES 

REDHOT bases its acquisition of application 
heuristics and macro operators on its recognition 
of instructional strategies in the training 
sequence. For example, consider the sequences of 
exercises in Figure I, taken from the actual 
curriculum. The sequence, which is at the 
beginning of the whole curriculum, gives the 
primitive rule of inference AA, then shows 
successive elaborations of the use of that rule of 
inference. REDHOT detects this to be a use of a 
strategy called focus a& elaborate, in which a 
rule is first focussed, and then a particular 
elaboration is given. 

Teacher: Here is a rule called AA. 

Teacher: Here are some exercises involving AA: 

1. Goal: Q 
Premises: S -> Q, S 

2-5 [Several more exercises with different 
formulas. 1 

6. Goal: W 
Premises: S -> Q, Q -> W, S 

7. Goal: S 
Premises: R -> S, Q -> W, W -> R, Q 

899 [Two more similar exercises involving 
multiple applications of AA.] 

Figure _1_ 
Sequence of Exercises for Learning 
Multiple Application of AA Command 

In the above training sequence, REDHOT takes 
steps l-5 as focussing on the AA rule, and steps 6- 
9 as providing a useful elaboration of that rule, 
in the form of the macro operator for multiple 
application. 
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A second example of the use of an 
instructional strategy concerns removing possible 
bugs in learned heuristics and macro operators. We 
illustrate this with the macro rule for conditional 
proof, a common strategy in logic and mathematics, 
which we paraphrase as follows: 

I Conditional Proof MACRO MOVE I 
1 IF you want to prove P -> Q I 
I THEN I 
I ASSUME P as a working premise I 
I PROVE Q (likely from P); I 
I APPLY "CP" rule, removing premise I 

I 

The actual instructional sequence goes to 
great length to teach this principle, and students 
typically have a difficult time with the principle; 
one defective version of the rule that students 
seem to learn is the following: 

I "Defective" MACRO MOVE I 
I IF you have a formula P -> Q I 

I AND you want to prove Q I 

I THEN I 
I ASSUME P as a working premise; I 

I PROVE Q using AA; I 

This is a very poor strategy; but the evidence 
suggest that over half of the students learn it. 
The following exercise seems to help students debug 
the rule "Defective" . 

Derive: S -> (Q OR R) 
Premise: (R -> R) -> (Q OR R) 

In examining student protocols, we see that 
many students will try several times to apply the 
"Defective" rule to this exercise. Finally, (we 
speculate) they realize that (R -> R) is already 
something that they know how to prove, using a 
previously learned macro operator. Then, the 
actual proof becomes obvious, the student corrects 
the defective rule, and goes on to handle similar 
exercises correctly. We call this instructional 
strategy "focus and frustrate" wherein a student 
discovers --somewhat traumatically--that a rule he 
learned is defective. 

Therefore, an exercise such as the above is 
not just randomly selected, but instead tests 
possible student "bugs" in an exact way. Notice 
that it is one of the simplest exercises that will 
discriminate between the correct and defective 
formulations of the macro rule for conditionaL 
proof. (See [2] for a discussion of "debugging" 
student skills.) 

to 

V. REDHOT AND LEARNING SYSTEMS 

Like many LS's, REDHOT starts wi th the ab ility 
state everything it will "learn" I in some sense 

at least. The initial rules for solving the 
problem (the natural deduction rules for logic) are 
complete with respect to the underlying problem 
solver --unless it is restricted in time/space (in 
practice it is). The heuristic and macro languages 
are also given in advance, and they of course 
define a space of the possible rules that might be 
learned. So, the object is to select among 
heuristics and macro rules in this space. One way 
to formulate doing this is by experimentation or 
exploration. REDHOT selects objects from this 
meta-space by being taught. 

Learning by being taught consists of the 
"teacher" laying out exercises in an organized and 
structured way, and the student recognizing 
something of that structure. The student makes-- 
believes that he is entitled to make--fairly bold 
hypotheses about the rules he is learning, and 
relies on the training sequence to contain 
exercises that will check for common errors that he 
the student may have made in formulating these 
rules. REDHOT compares somewhat radically to many 
LS's that rely on a somewhat slow, computationally 
coherent delimitation of the rule (or concept) 
involved. 

We speculate that learning by "discovery" or 
"experimentation" is a slow process for even 
humans, done over the eons of time and through 
social interaction. Most human learning is by 
being taught, and one can argue that AI should give 
attention to the relation between learning and 
teaching, in terms of modelling the acquisition of 
concepts, problem-solving skills, and natural 
language. We further speculate that learning by 
"discovery" will be aided by extracting as much 
information as possible from the structure of the 
environment in which the LS operates. 
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