
MODELLING STUDENT ACQUISITION OF PROBLEM-SOLVING SKILLS

Robert Smith
Department of Computer Science

Rutgers University
New Brunswick, N. J. 08903

ABSTRACT

This paper describes the design of a system
that simulates a human student learning to prove
tneorems in logic by interacting with a curriculum
designed to teach those skills. The paper argues
that sequences in this curriculum use instructional
strateu, and that the student recognizgs these
strategies in driving the learning process.

I. INTRODUCTION

A central issue in the design of learning
systems (LS's) is the classification of the sources
of information that the system uses for its
acquisition. The general notion is that an LS
begins with certain knowledge and capabilities, and
then extracts information from training sequences
or experiments in the acquisition process.
Implicit within this general characterization is
the idea that the LS enforces some kind of
interpretation on the training sequence by way of
driving the acquisition process. Often the nature
of the interpretation is left implicit. An example
of an LS that makes somewhat explicit the
interpretation of its training sequence is
Winston's program for learning structure
descriptions, where the program interprets the near
m example as providing key information about the
structure being learned [lr].

We speculate that much human learning takes
place in a more richly structured environment,
wherein the human learner is interpreting the
instructional seauences provided to him in a richer
way than LS's typically envision. Indeed, most
LS's nave made few if any explicit assumptions
about the structure of the environment in which the
training sequence occurs. One particularly rich
environment is learning & teaching. We suggest
that teachers use certain instructional strategies
in presenting material, and that students recognize
these strategies.

This paper describes the motivation for an LS
called REDHOT. REDHOT is a simulation of a student

* I would like to thank Phyllis Walker for analysis
of the curriculum and student protocols; Saul
Amarel, Tom Mitchell, Don Smith, and N. Sridharan
for many ideas and assistance. The research
reported here is sponsored by the Office of Naval
Research under contract N00014-79-C-0780. We
gratefully acknowledge their support for this work.

acquiring the skill of constructing proofs in
elementary logic. We characterize this skill as
consisting of (1) primitive operators in the form
of natural-deduction rules of inference, (2) "macro
moves" consisting of several rules of inference,
and (3) application heuristics that describe when
to use the rules. The central theme of this
research is to model the acquisition of these
skills around the recognition of instructional
strategies in a curriculum designed to teach the
student.

II. CURRICULUM FOR REDHOT

We are using the curriculum from the computer-
assisted instruction (CA11 course developed at
Stanford University by Patrick Suppes and co-
workers. (See [3] for details.) This CA1 system
is used as the sole mode of instruction for
approximately 300 Stanford students each year. We
chose a CA1 curriculum because we thought that the
explicitness inherent in a successful CA1 system
developed and tested over a number of years might
make the instructional strategies relatively clear.

The curriculum contains explanatory text,
examples, exercises, and hints. The explanatory
text is rather large, and uses both computer-
generated audio and display as modes of
presentation. The presentation strategy used by
the actual CA1 system is linear through the
curriculum. For use with REDHOT, we have developed
a stylized curriculum in an artificial language CL.
It contains the examples, exercises, partially
formed rules, and hints.

The exercises are the central part of the
curriculum. There are approximately 500 theorems
that the student is asked to prove, with about 200
in propositional logic, 200 in elementary algebra,
and 100 in the theory of quantification.

The human student performs these exercises by
giving the steps of the developing proof to an
interactive proof checker. This proof checker is
the heart of the original instructional system. We
developed a version of this proof checker for use
with the REDHOT student simulation.

III. THE DESIGN OF REDHOT

REDHOT learns rules for proving theorems.
These rules are initially the natural deduction

331

rules of many logic systems. The student improves
upon these rules by building macro operators and by
adding heuristics to existing rules--i.e., giving
strategic advice in the left-hand-sides of the
production rules.*

For example, the rule AA ("affirm the
antecedent", the system's version of modus ponens)
can be stated as the following rule:

Rule AA I
GOAL: Derive Q I
Prerequisites: f

P already on some line i I
P -> Q on some line j I

Method: f
AA command on lines i and j I

Heuristics: None (yet) I
Effectiveness: Perfect I

In the above, we have adopted a style of rule
presentation that is similar to the rules of a
production system. The letters P and Q stand for
arbitrary formulas, and i and j for arbitrary lines
of the already existing proof. The aoal tells what
the rule will produce. The mreauisites tell us
that two formulas of the appropriate forms are
needed, and the method gives the schematic command
to the proof checker that will accomplish this.
The heuristics associated with a rule are learned
by the system, and indicate how the rule should be
used. Effectiveness of the rule is also learned,
and indicates how effective the rule will be in
achieving its goal given its prerequisites. The
effectiveness of this rule is "perfect" since the
rule is given as such in the curriculum.

The underlying problem solver for REDHOT is a
depth-first, heuristic problem solving over the
existing rules. It is assumed that: (a) the system
has sufficient memory and CPU facilities for this
search, if necessary; and (b) that the underlying
pattern matchers are sufficient to match arbitrary
formulas, line numbers, etc. Both of these
assumptions are open to criticism on the grounds of
being psychologically unrealistic. One of the
goals of the construction of REDHOT is to decide on
plausible ways to restrict the problem solver and
pattern matcher to make a more realistic system.

REDHOT learns the heuristics for the
application of the rule. These heuristics are
stated in a heuristic-language HL, which is
strongly tied to the curriculum language CL. The
heuristics associated with a rule guide the student
as to when to try that rule or not to try it.

For example, the curriculum appears to teach
the student that the AA rule is a plausible thing
to try when the prerequisites are available

* See [II for a conceptual discussion of the
levels through which this process might proceed.
One way to regard this research is a suggestion of
the mechanism for this acquisition of heuristics
and macro moves.

(whether or not the goal is immediately desired).
This is one of the primitives of the HL heuristics
language.

An example of a macro operator that is not a
primitive rule is the "multiple AA" macro move. A
paraphrase of this macro operator might be:

I Multiple-AA Macro Move I
I IF you want to prove Q :
I AND I
I have P, P -> P1, PI -> P2, Pn -> Q I
: THEN I
I make multiple AA applications, I
I which is guaranteed to succeed I

We discuss below t.he training sequence that teaches
this macro move.

IV. m RECOGNITION @ INSTRUCTIONAL STRATEGIES

REDHOT bases its acquisition of application
heuristics and macro operators on its recognition
of instructional strategies in the training
sequence. For example, consider the sequences of
exercises in Figure I, taken from the actual
curriculum. The sequence, which is at the
beginning of the whole curriculum, gives the
primitive rule of inference AA, then shows
successive elaborations of the use of that rule of
inference. REDHOT detects this to be a use of a
strategy called focus a& elaborate, in which a
rule is first focussed, and then a particular
elaboration is given.

Teacher: Here is a rule called AA.

Teacher: Here are some exercises involving AA:

1. Goal: Q
Premises: S -> Q, S

2-5 [Several more exercises with different
formulas. 1

6. Goal: W
Premises: S -> Q, Q -> W, S

7. Goal: S
Premises: R -> S, Q -> W, W -> R, Q

899 [Two more similar exercises involving
multiple applications of AA.]

Figure _1_
Sequence of Exercises for Learning
Multiple Application of AA Command

In the above training sequence, REDHOT takes
steps l-5 as focussing on the AA rule, and steps 6-
9 as providing a useful elaboration of that rule,
in the form of the macro operator for multiple
application.

222

A second example of the use of an
instructional strategy concerns removing possible
bugs in learned heuristics and macro operators. We
illustrate this with the macro rule for conditional
proof, a common strategy in logic and mathematics,
which we paraphrase as follows:

I Conditional Proof MACRO MOVE I
1 IF you want to prove P -> Q I
I THEN I
I ASSUME P as a working premise I
I PROVE Q (likely from P); I
I APPLY "CP" rule, removing premise I

I

The actual instructional sequence goes to
great length to teach this principle, and students
typically have a difficult time with the principle;
one defective version of the rule that students
seem to learn is the following:

I "Defective" MACRO MOVE I
I IF you have a formula P -> Q I

I AND you want to prove Q I

I THEN I
I ASSUME P as a working premise; I

I PROVE Q using AA; I

This is a very poor strategy; but the evidence
suggest that over half of the students learn it.
The following exercise seems to help students debug
the rule "Defective" .

Derive: S -> (Q OR R)
Premise: (R -> R) -> (Q OR R)

In examining student protocols, we see that
many students will try several times to apply the
"Defective" rule to this exercise. Finally, (we
speculate) they realize that (R -> R) is already
something that they know how to prove, using a
previously learned macro operator. Then, the
actual proof becomes obvious, the student corrects
the defective rule, and goes on to handle similar
exercises correctly. We call this instructional
strategy "focus and frustrate" wherein a student
discovers --somewhat traumatically--that a rule he
learned is defective.

Therefore, an exercise such as the above is
not just randomly selected, but instead tests
possible student "bugs" in an exact way. Notice
that it is one of the simplest exercises that will
discriminate between the correct and defective
formulations of the macro rule for conditionaL
proof. (See [2] for a discussion of "debugging"
student skills.)

to

V. REDHOT AND LEARNING SYSTEMS

Like many LS's, REDHOT starts wi th the ab ility
state everything it will "learn" I in some sense

at least. The initial rules for solving the
problem (the natural deduction rules for logic) are
complete with respect to the underlying problem
solver --unless it is restricted in time/space (in
practice it is). The heuristic and macro languages
are also given in advance, and they of course
define a space of the possible rules that might be
learned. So, the object is to select among
heuristics and macro rules in this space. One way
to formulate doing this is by experimentation or
exploration. REDHOT selects objects from this
meta-space by being taught.

Learning by being taught consists of the
"teacher" laying out exercises in an organized and
structured way, and the student recognizing
something of that structure. The student makes--
believes that he is entitled to make--fairly bold
hypotheses about the rules he is learning, and
relies on the training sequence to contain
exercises that will check for common errors that he
the student may have made in formulating these
rules. REDHOT compares somewhat radically to many
LS's that rely on a somewhat slow, computationally
coherent delimitation of the rule (or concept)
involved.

We speculate that learning by "discovery" or
"experimentation" is a slow process for even
humans, done over the eons of time and through
social interaction. Most human learning is by
being taught, and one can argue that AI should give
attention to the relation between learning and
teaching, in terms of modelling the acquisition of
concepts, problem-solving skills, and natural
language. We further speculate that learning by
"discovery" will be aided by extracting as much
information as possible from the structure of the
environment in which the LS operates.

IllI

L-21

[31

II41

REFERENCES

Amarel, Saul, "An Approach to Problem Solving
and Theorem Proving in the Propositional
Calculus", in Svstems and Computer Science,
(Hart and Takasu, eds.), Toronto: University of
Toronto Press, 1967.

Brown, John Seely, Burton, Richard R., and
Larkin, Kathy M., "Representing and Using
Procedural Bugs for Educational Purposes", in
Proceedings of the 1977 Annual Conference of
the Association for Computing Machinerv, New
York, 1977.

Suppes, P., Smith, R. L., and Beard, M.,
"University-level Computer-assisted Instruction
at Stanford: 1975", in Instructional Science,
1977, 4, 151-185.

Winston, Patrick Henry, "Learning Structural
Descriptions from Examples", Ph.D. thesis, in
The Psvchology of Commuter Vision, (Patrick
Henry Winston, ed.), McGraw-Hill, New York,
1975.

223

