
APPROACHES TO KNOWLEDGE ACQUISITION: 

THE INSTRUCTABLE PROQUCTION SYSTEM PROJECT 

Michael D. Rychener 

Carnegie-Mellon University 
Department of Computer Science 

Schenley Park 
Pittsburgh, PA 15213 

Abstract 

Progress in building systems that acquire knowledge from a 
variety of sources depends on determining certain functional 
requirements and ways for them to be met. Experiments have 
been performed with learning systems having a variety of 
functional components. The results of these experiments have 
brought to light deficiencies of various sorts, in systems with 
various degrees of effectiveness. The components considered 
here are: interaction language; organization of procedural 
elements; explanation of system behavior; accommodation to new 
knowledge; connection of goals with system capabilities; 
reformulation (mapping) of knowledge; evaluation of behavior; and 
compilation to achieve efficiency and automaticity. A number of 
approaches to knowledge acquisition tried within the Instructable 
Production System (IPS) Project are sketched.* 

1. The lnst ructable Production System 
Project 

The IPS project [6] attempts to build a knowledge acquisition 
system tinder a number of constraints. The instructor of the 
system gains all information about IPS by observing its 
interactions with its environment (including the instructor). 
Interaction is to take place in (restricted) natural language. The 
interaction is mixed initiative, with both participants free to try to 
influence the direction. Instruction may be about any topic or 
phenomenon in the system’s external or internal environment. 
Knowledge accumulates over the lifetime of the system. 

*This research was sponsored by the Defense Advanced Research 
Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force 
Avionics Laboratory Under Contract F33615-78-C-1551. The views and 
conclusions contained in this document ate those of the author and 

should not be interpreted as representing the official polictes, either 
expressed or implied, of the. Defense Advanced Research Projects 
Agency or the US Government. 

Throughout these IPS experiments, the underlying knowledge 
organization has been Production Systems (PSs) [2], a form of 
rule-based system in which learning is formulated as the addition 
to, and modification of, an unstructured collection of production 
rules. Behavior is obtained through a simple recognize-act 
cycle with a sophisticated set of principles for resolving conflicts 
among rules. The dynamic short-term memory of the system is the 
Working Memory (WM), whose contents are matched each cycle 
to the conditions of rules in the long-term memory, Production 
Memory. 

Study of seven major attempts to construct instructable PSs 
with various orientations leads to recognizing the centrality of 
eight functional components. Listing the components and their 
embodiment in various versions of IPS can contribute to research 
on learning systems in general, by clarifying some of the important 
subproblems. This discussion is the first overview of the work of 
the project to date, and indicates its evolutionary development. 
Members of the IPS project are no longer working together 
intensively to build an instructable F ‘S, but individual studies that 
will add to our knowledge about one or more of these components 
are continuing. Progress on the problem of efficiency of PSs has 
been important to the IPS project [3], but will not be discussed 
further here. 

2. Essential Functional Components of 
Inst ructable Systems 

The components listed in this section are to be interpreted 
loosely as dimensions along which learning systems might vary. 

Interaction The content and form of communications -A 
between instructor and IPS can have a lot to do with ease and 
effectiveness of instruction. In particular, it is important to know 
how closely communications correspond to internal IPS 
structures. Similarly, we must ask how well the manifest behavior 
of IPS indicates its progress on a task. An IPS can have various 

orientations towards interactions, ranging from passive to active, 
with maintenance of consistency and assimilation into existing 
structures. 

Organization. Each version of IPS approaches the issue of 
obtaining coherent behavior by adopting some form of 
organization of its ‘procedural’ knowledge. This may involve such 
techniques as collecting sets of rules into ‘methods’ and using 
signal conventions for sequencing. Whether IPS can explain its 

228 



static organization and whether the instructor 
of procedural control are important subissues. 

can see the details 

Explanation. A key operation in an instructable system is that 
of explaining how the system has arrived at some behavior, be it 
correct or incorrect. In the case of wrong behavior, IPS must 
reveal enough of its processing to allow the more intelligent 
instructor to determine what knowledge IPS lacks. 

Accommodation. Once corrections to IPS’s knowledge have 
been formulated by the instructor, it remains for further 
interactions with IPS to augment or modify itself. In the IPS 
framework, these modifications are taken to be changes to the 
rules of the system, rather than changes to the less permanent 
WM. As with interaction, IPS can take a passive or active 
approach to this process. 

Connection. Manifest errors are not the only way a system 
indicates a need for instruction: inability to connect a current 
problem with existing knowledge that might help in solving it is 
perhaps a more fundamental one. An IPS needs ways to 
assimilate problems into an existing knowledge framework, and 
ways to recognize the applicability of, and discriminate among, 
existing methods. 

Reformulation. Another way that IPS can avoid requiring 
instruction is for it to reformulate existing knowledge to apply in 
new circumstances. There are two aspects to this function: 
finding knowledge that is potentially suitable for mapping, and 
performing the actual mapping. In contrast to connection, this 
component involves transformation of knowledge in rules, either 
permanently or dynamically. 

Evaluation. Since the instructor has limited access to what IPS 
is doing, it is important for IPS to be able to evaluate its own 
progress, recognizing deficiencies and errors ai they occur so 
that instruction can take place as closely as possible to the 
dynamic point of error. Defining what progress is and formulating 
relevant questions to ask to fill gaps in knowledge are two 
subissues. 

Compilation. Rules initially formed as a result of the 
instructor’s input may be amenable to refinements that improve 
IPS’s efficiency. This follows from several factors: during 
instruction, IPS may be engaged in search or other ‘interpretive’ 
execution&; instruction may provide IPS with fragments that can 
only be assembled into efficient form later; and IPS may form rules 
that are either too general or too specific. Improvement with 
practice is the psychological analog of this capability. Anderson 
et al [l] have formulated several approaches to compilation. 

3. Survey of Approaches 

Kernell, ANA, Kernel2 and IPMSL have been fully implemented. 
The others were suspended at various earlier stages of 
development, for reasons that were rarely related to substantive or 
conceptual difficulties. 

Kernel Version 1 -ZL The starting point for IPS is the adoption of 
a pure means-ends strategy: given explicit goals, rules are the 
means to reducing or solving them. Four classes of rules are 
distinguished: means rules; recognizers of success; recognizers of 
failure; and evocation of goals from goal-free data. The Kernel1 
[6] approach further organizes rules into methods, which group 
together (via patterns for the same goal) a number of means, tests 
and failure rules. Interaction consists of language strings that 
roughly correspond to these methods and to system goals (among 
which are queries). Keywords in the language give rise to the 
method sequencing tags and also serve to classify and bound 
rules. Explanation derives from the piecing together of various 
goals in WM, along with associated data. The major burden of 
putting together raw data that may be sufficient for explanation 
rests on the instructor, a serious weakness. 

Additive Successive Aouroximations [ASA). Some of the 
drawbacks of I<ernell can be remedied* by orienting instruction 
towards fragments of methods that can be more readily refined at 
later times. Interaction consists of having the instructor point at 
items in IPS’s environment (especially WM) in four ways: condition 
(for data to be tested), action (for appropriate operators), relevant 
(for essential data items), and entity (to create a symbol for a new 
knowledge expression). These designations result in methods 
that are very loose collections of rules, each of which contributes 
some small amount towards achievement of the goal. 
Accommodation is done as post-modification of an existing 
method in its dynamic execution context, through ten 
method-modification methods. 

Analoclv. A concerted attempt to deal with issues of 
connection and accommodation is represented by McDermott’s 
ANA program [4]. ANA starts out with the ability to solve a few 
very specific problems, and attacks subsequent similar problems 
by using the methods it has analogically. The starting methods are 
hand-coded. Connection of a new goal to an existing method 
takes place via special method description rules that are 
designed to respond to the full class of goals that appear possible 
for a method to deal with by analogy. An analogy is set up by 
finding paths through a semantic network containing known 
objects and actlons. As a method operating by analogy executes, 
rules recognize points where an analogy breaks down. Then 
general analogy methods are able either to patch the method 
directly with specific mappings or to query the instructor for new 
means-ends rules. 

Each attempt to build an IPS has been based on the idea of an 
initial hand-coded kernel system, with enough structure in it to 
support all further growth by instruction, A kernel establishes the 
internal representations and the overall approach to instruction. 
The following are presented in roughly chronological order. 

*These ideas were introduced by A. Newell in October, 1977. 

229 



Problem Soaces. Problem spaces [5]* provide a novel basis 
for IPS by embedding all behavior and interactions in search. A 
problem space consists of a collection of knowledge elements that 
compose states in a space, plus a collection of operators that 
produce new states from known ones. A problem consists of an 
initial state, a desired state, and possibly path constraints. 
Newell’s Problem Space Hypothesis (ibid.) claims that all 
goal-oriented cognitive activity occurs in a problem space, not just 
activity that is sufficiently problematical. Interaction consists of 
giving IPS problems and search control knowledge (hints as to 
how to search specific spaces). Every Kernel component must be 
a problem space too, and thus subject to the same modification 
processes. The concrete proposal as it now stands concentrates 
on interaction, explanation (which involves sources of knowledge 
about the present state of the search), and organization. 

Schemas. The use of schemas as a basis for an IPS kerner* 
make slot-filling the primary information-gathering operation. A 
slot is implemented as a set of rules. The slots are: executable 
method; test of completion; assimilation (connects present WM 
with the schema for a goal); initialization (gathers operands for a 
method); model (records the instruction episode for later 
reference); accommodation (records patches to the method); 
status (records gaps in the knowledge); monitoring (allows careful 
execution); and organization (records method structure). 
Orientation towards instruction is active, as in ASA. Explanation 
consists of interpreting the model slot, and accommodation, of 
fitting additions into the model. Connection is via a discrimination 
network composed of the aggregated assimilation slots of all 
schemas. Compilation is needed here, to map model to method. 

Kernel Version 2. An approach with basic ideas similar to 
ASA and to Waterman’s Exemplary Programming [8], Kernel2 [7] 
focusses on the process of IPS interacting with the instructor to 
build rules in a dynamic execution context. The instructor 
essentially steps through the process of achieving a goal, with IPS 
noting what is done and marking elements for inclusion in the 
rules to be built when the goal is achieved. Kernel2 includes a 
semantic network of information about its methods, for use as a 
‘help’ facility. Kernel2 is the basis from which the IPMSL system, 
below, is built. 

Semantic Network. Viewing accumulation of knowledge as 
additions to a semantic network is the approach taken by the 
IPMSL system [7]. Interaction consists of definition and 
modification of nodes in a net, where such nodes are represented 
completely as rules. Display and net search facilities are provided 
as aids to explanation and accommodation. The availability of 
traditional semantic network inferences makes it possible for 
IPMSL to develop an approach to connection and reformulation, 
since they provide a set of tools for relating and mapping 
knowledge into more tractable expressions. 

*This 

1978. 
approach was formulated by A. Newell and J. Laird in October of 

4. Conclusions 

The IPS project has not yet succeeded in combining effective 
versions of components as discussed above, to produce an 
effective IPS. The components as presently understood and 
developed, in fact, probably fall short of complete adequacy for 
such a system. But we have explored and developed a number of 
approaches to instructability, an exploration that has added to the 
stock of techniques for exploiting the advantages of PSs. We are 
encouraged by the ability of the basic PS architecture to enable 
explorations in a variety of directions and to assume a variety of 
representations and organizations. 

Acknowledqments. Much of the work sketched has been 
done jointly over the course of several years. Other project 
members are (in approximate order of duration of commitment to 
it): Allen Newell, John McDermott, Charles L. Forgy, Kamesh 
Ramakrishna, Pat Langley, Paul Rosenbloom, and John Laird. 
Helpful comments on this paper were made by Allen Newell, Jaime 
Carbonell, David Neves and Robert Akscyn. 

References 

1. Anderson, J. R., Kline, P. J., and Beasley, C. M. Jr. A Theory 
of the Acquisition of Cognitive Skills. Tech. Rept. 77-1, Yale 
University, Dept. of Psychology, January, 1978. 

2. Forgy, C. L. OPS4 User’s Manual. Tech. Rept. 
CMU-CS-79-132, Carnegie-Mellon University, Dept. of Computer 
Science, July, 1979. 

3. Forgy, C. L. On the Efficient Implementation of Production 
Systems. Ph.D. Th., Carnegie-Mellon University, Dept. of 
Computer Science, February 1979. 

4. McDermott, J. ANA: An Assimilating and Accommodating 
Production System. Tech. Rept. CMU-CS-78-156, 
Carnegie-Mellon University, Dept. of Computer Science, 
December, 1978. Also appeared in IJCAI-79 

5. Newell, A. Reasoning, problem solving and decision 
processes: the problem space as a fundamental category. In 
Attention and Performance VIII, Nickerson, R., Ed.,Erlbaum, 
Hillsdale, NJ, 1980. 

6. Rychener, M. D. and Newell, A. An instructable production 
system: basic design issues. In Pattern-Directed Inference 
Systems, Waterman, D. A. and Hayes-Roth, F., Eds., Academic, 
New York, NY, 1978, pp. 135-153. 

7. Rychener, M. D. A Semantic Network of Production Rules in 
a System for Describing Computer Structures. Tech. Rept. 
CMU-CS-79-130, Carnegie-Mellon University, Dept. of Computer 
Science, June, 1979. Also appeared in IJCAI-79 

8. Waterman, D. A. Rule-Directed Interactive Transaction 
Agents: An Approach to Knowledge Acquisition. Tech. Rept. 
R-21 71 -ARPA, The Rand Corp., February, 1978. 

d*Schemas were first proposed for IPS by Hychener, May, 1978 

230 


