
A THEORY OF METRIC SPATIAL INFERENCE

Drew McDermott

Yale University
Department of Computer Science

New Haven, Connecticut

ABSTRACT*

Efficient and robust spatial reasoning
requires that the properties of real space be taken
seriously. One approach to doing this is to
assimilate facts into a "fuzzy map" of the
positions and orientations of the objects involved
in those facts. Then many inferences about
distances and directions may be made by "just
looking" at the map, to determine bounds on
quantities of interest. For flexibility, there
must be many frames of reference with respect to
which coordinates are measure. The resulting
representation supports many tasks, including
finding routes from one place to another.

***Jr

In the past, AI researchers have often sought
to reduce spatial reasoning to topological
reasoning. [4, 6, 81 For example, the important
problem of finding routes was analyzed as the
problem of finding a path through a network or tree
of known places. This sort of formulation throws
away the basic fact that a route exists in real
physical space regardless of our knowledge of any
of the places along the way. So a network-based
algorithm will fail to exhibit two important
phenomena of route-finding:

> Often you know roughly what direction to go
in without having any idea of the details of the
path, or even if the path is physically possible.

> You can tell immediately that you don't know
how to get to a place, just by verifying that you
don't know the direction to that place.

There are many other problems that a
topological approach fails to treat adequately.
Here are some of the problems we (Ernie Davis, Mark
Zbikowski and I> have worked on:

> How are metric facts, such as "A is about 5
miles from B" or “The direction from A to B is
north" to be stored?

> How are queries such as "Is it farther
A to B than from A to C?" to be answered?

from

> Given a large set of objects and facts
relating them, how do you find the objects that
might be near some position? or with some
orientation?

Some of these problems have received more of
our attention than others. In what follows, I will
sketch our approach, the details of various
algorithms and data structures, and the results we
have so far.

All of our solutions revolve around keeping
track of the fuzzy coordinates of objects in
various frames of reference. That is, to store --
metric facts about objects, the system tries to
find, for each object, the ranges in which
quantities like its X and Y coordinates,
orientation and dimensions lie, with respect to
convenient coordinate systems. The set of all the
frames and coordinates is called a fuzzy map. We
represent shapes as prototypes plus modifications.
13, 51 The domain we have used is the map of Yale
University, from which most of my examples will be
taken.

To
tasks:

date we have written programs to do

(1) Given a stream of metric relationships,
create a fuzzy map of the objects involved.

Research supported by NSF under contract MCS7803599

246

(2) Given a fuzzy map, test the consistency of
a relationship or find the value of a term.

(3) Given a fuzzy map, find objects with a
position and orientation near some given value.

(4) Plot a course around objects or through
conduits discovered using (3).

So far we have invested most of our effort in
the study of task (21, what I described as "just
looking" at the map to see what's true. This
actually involves using hill climbing to see if a
relationship can be satisfied, or to find the
possible range of values of a term. So, in Figure
1, to answer the query 'What's the distance from
Kline to Sterling in meters?" the system plunks
down two points in the fuzz boxes of Kline and
Sterling, and moves them as close together, then as
far apart, as it can. To answer the query "Is
Kline closer to Dunham than to Sterling?" it looks
for a configuration of points from the fuzz boxes
of Kline, Dunham and Sterling in which Kline is
further from Dunham than Sterling. (Since it fails
to find it, the answer to the query is "Yes.")

The same hill-climbing algorithm is used for
task (11, the assimilation of facts into a map. In
this case, the object is to find the smallest and
largest possible values of each "primitive term"
involved in a relationship. (A primitive term is a
quantity like (X A) or (LENGTH A) that
characterizes an object's position, orientation or
dimensions. More complicated terms, like (DIST A
B), are functions of primitive terms.) The new,
smaller range of a primitive term is then stored
for future reference. This device, called fuzz
constriction, suffices to capture many spatial
facts*

However, it can happen that the range of a
primitive term does not change at all after a new
fact is assimilated, especially when the fact
relates objects about which little is known. For
example, if we tell the system that the orientation
of Sterling Library is the same as the orientation
of Becton Library, when it knows nothing about
their orientations with respect to Yale, this new
fact doesn't constrain them any further. In this
case, mere fuzz constriction has failed to capture
the new fact. The solution is to introduce a new
frame of reference F, and to indicate that (ORIENT
STERLING) = (ORIENT BECTON) = 0.0 in this frame,
while the orientation of F is completely fuzzy
(from 0 to 2pi) with respect to Yale.

The machinery introduced so far enables us to
retrieve characteristics of given objects. It is
also important to be able to retrieve objects given
their spatial characteristics (task (3)). For
example, if you are trying to get from one place to
another in a city, YOU will want to know what
streets to use, i.e., how to find the nearest 'long
porous objects" with approximately the right
position and orientation. This is a job for k-d
trees of the kind devised by Bentley. [l, 21 In
these trees, a large set of objects is broken down
into manageable chunks by an obvious generalization
of binary search: repeatedly discriminate on each
coordinate. An example is shown in Figure 2.

The original version of k-d trees was designed
to work on data bases in which all primitive terms
have known values. In our application, most
primitive terms can only be assigned ranges. To
deal with this problem, we take the following tack:
if a given attribute of an object is "very fuzzy"
(e.g., its orientation is known only to lie between
0 and 2 pi>, then we do not index it on that
attribute. But if it is only moderately fuzzy,

247

I I

then we index it as though its value were the
midpoint of its range. This requires that on
retrieval we be willing to look around a little for
objects fitting our requirements. That is, if we
need to find a street with a given orientation, we
keep relaxing the requirement until we find one.
Obviously, a street found after many relaxations is
only a plausible candidate, and must be proven to
actually work; and the process must be terminated
when it is unlikely to give worthwhile results.

02

route means depends on the density of the region to
be traversed. If it is mostly open, then the
problem is to plan to avoid obstacles; if it is
mostly obstacle, then the problem is to plan to use
conduits. Either way, the system must find objects
with known properties (e.g., "open and pointing in
the right direction" or "filled and lying in my
way").

To summarize, our main results so far are
these: representing space as a structure of
multiple frames of reference, within which objects
have fuzzy positions, is efficient and robust. In
this context, assimilation is the process of
constricting fuzz or creating new frames to capture
a new fact. Route finding involves computing a
fuzzy vector from where you are to where you want
to be, then finding objects which can help or
hinder your progress, and altering the plan to take
them into account.

Many problems still remain. The assimilation
algorithm needs improvement. The route finder has
not yet been completed or connected with the
assimilation and retrieval algorithms. As yet we
have not implemented a (simulated) route executor,
although this is a high priority.

AcknowledPements: Ernie Davis and Mark Zbikowski
have helped develop many of the ideas in this
paper, and made suggestions for improving the
exposition.

[ll

121

[31

[41

[51

[61

[71

181

REFERENCES

Jon Bentley 1975 Multidimensional binary search
trees used for associative searching, Comm.
ACM 18, no. 9, PP. 509-517
Jon Bentley and Jerome Friedman 1979 Data

I

structures for range searching, Comnut.
Surveys ll, no. 4, pp. 397-409
John Hollerbach 1975 Hierarchical shape
description of objects by selection and
modification of prototypes, Cambridge: MIT AI
Laboratory Technical Report 346
Benjamin Kuipers 1978 Modeling spatial

knowledge, Cognitive Science 2_, no. 2, p. 129
David Marr and H. Keith Nishihara 1977
Representation and recognition of the spatial
organization of three dimensional shapes,
Cambridge: MIT AI Laboratory Memo 416
Drew McDermott 1974 Assimilation of new
information by a natural language-understanding
w-w=-, Cambridge: MIT AI Laboratory
Technical Report 291
Drew McDermott 1980 Spatial inferences with
ground, metric formulas on simple objects, New
Haven: Yale Computer Science Research Report
173
James Meehan 1976 The metanovel: writing
stories by computer, New Haven: Yale Computer
Science Research Report 74

This algorithm for finding objects that might
have given characteristics is used by our
route-finding programs. Exactly what finding a

248

