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ABSTRACT* 

Efficient and robust spatial reasoning 
requires that the properties of real space be taken 
seriously. One approach to doing this is to 
assimilate facts into a "fuzzy map" of the 
positions and orientations of the objects involved 
in those facts. Then many inferences about 
distances and directions may be made by "just 
looking" at the map, to determine bounds on 
quantities of interest. For flexibility, there 
must be many frames of reference with respect to 
which coordinates are measure. The resulting 
representation supports many tasks, including 
finding routes from one place to another. 

***Jr 

In the past, AI researchers have often sought 
to reduce spatial reasoning to topological 
reasoning. [4, 6, 81 For example, the important 
problem of finding routes was analyzed as the 
problem of finding a path through a network or tree 
of known places. This sort of formulation throws 
away the basic fact that a route exists in real 
physical space regardless of our knowledge of any 
of the places along the way. So a network-based 
algorithm will fail to exhibit two important 
phenomena of route-finding: 

> Often you know roughly what direction to go 
in without having any idea of the details of the 
path, or even if the path is physically possible. 

> You can tell immediately that you don't know 
how to get to a place, just by verifying that you 
don't know the direction to that place. 

There are many other problems that a 
topological approach fails to treat adequately. 
Here are some of the problems we (Ernie Davis, Mark 
Zbikowski and I> have worked on: 

> How are metric facts, such as "A is about 5 
miles from B" or “The direction from A to B is 
north" to be stored? 

> How are queries such as "Is it farther 
A to B than from A to C?" to be answered? 

from 

> Given a large set of objects and facts 
relating them, how do you find the objects that 
might be near some position? or with some 
orientation? 

Some of these problems have received more of 
our attention than others. In what follows, I will 
sketch our approach, the details of various 
algorithms and data structures, and the results we 
have so far. 

All of our solutions revolve around keeping 
track of the fuzzy coordinates of objects in 
various frames of reference. That is, to store -- 
metric facts about objects, the system tries to 
find, for each object, the ranges in which 
quantities like its X and Y coordinates, 
orientation and dimensions lie, with respect to 
convenient coordinate systems. The set of all the 
frames and coordinates is called a fuzzy map. We 
represent shapes as prototypes plus modifications. 
13, 51 The domain we have used is the map of Yale 
University, from which most of my examples will be 
taken. 

To 
tasks: 

date we have written programs to do 

(1) Given a stream of metric relationships, 
create a fuzzy map of the objects involved. 
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(2) Given a fuzzy map, test the consistency of 
a relationship or find the value of a term. 

(3) Given a fuzzy map, find objects with a 
position and orientation near some given value. 

(4) Plot a course around objects or through 
conduits discovered using (3). 

So far we have invested most of our effort in 
the study of task (21, what I described as "just 
looking" at the map to see what's true. This 
actually involves using hill climbing to see if a 
relationship can be satisfied, or to find the 
possible range of values of a term. So, in Figure 
1, to answer the query 'What's the distance from 
Kline to Sterling in meters?" the system plunks 
down two points in the fuzz boxes of Kline and 
Sterling, and moves them as close together, then as 
far apart, as it can. To answer the query "Is 
Kline closer to Dunham than to Sterling?" it looks 
for a configuration of points from the fuzz boxes 
of Kline, Dunham and Sterling in which Kline is 
further from Dunham than Sterling. (Since it fails 
to find it, the answer to the query is "Yes.") 

The same hill-climbing algorithm is used for 
task (11, the assimilation of facts into a map. In 
this case, the object is to find the smallest and 
largest possible values of each "primitive term" 
involved in a relationship. (A primitive term is a 
quantity like (X A) or (LENGTH A) that 
characterizes an object's position, orientation or 
dimensions. More complicated terms, like (DIST A 
B), are functions of primitive terms.) The new, 
smaller range of a primitive term is then stored 
for future reference. This device, called fuzz 
constriction, suffices to capture many spatial 
facts* 

However, it can happen that the range of a 
primitive term does not change at all after a new 
fact is assimilated, especially when the fact 
relates objects about which little is known. For 
example, if we tell the system that the orientation 
of Sterling Library is the same as the orientation 
of Becton Library, when it knows nothing about 
their orientations with respect to Yale, this new 
fact doesn't constrain them any further. In this 
case, mere fuzz constriction has failed to capture 
the new fact. The solution is to introduce a new 
frame of reference F, and to indicate that (ORIENT 
STERLING) = (ORIENT BECTON) = 0.0 in this frame, 
while the orientation of F is completely fuzzy 
(from 0 to 2pi) with respect to Yale. 

The machinery introduced so far enables us to 
retrieve characteristics of given objects. It is 
also important to be able to retrieve objects given 
their spatial characteristics (task (3)). For 
example, if you are trying to get from one place to 
another in a city, YOU will want to know what 
streets to use, i.e., how to find the nearest 'long 
porous objects" with approximately the right 
position and orientation. This is a job for k-d 
trees of the kind devised by Bentley. [l, 21 In 
these trees, a large set of objects is broken down 
into manageable chunks by an obvious generalization 
of binary search: repeatedly discriminate on each 
coordinate. An example is shown in Figure 2. 

The original version of k-d trees was designed 
to work on data bases in which all primitive terms 
have known values. In our application, most 
primitive terms can only be assigned ranges. To 
deal with this problem, we take the following tack: 
if a given attribute of an object is "very fuzzy" 
(e.g., its orientation is known only to lie between 
0 and 2 pi>, then we do not index it on that 
attribute. But if it is only moderately fuzzy, 
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then we index it as though its value were the 
midpoint of its range. This requires that on 
retrieval we be willing to look around a little for 
objects fitting our requirements. That is, if we 
need to find a street with a given orientation, we 
keep relaxing the requirement until we find one. 
Obviously, a street found after many relaxations is 
only a plausible candidate, and must be proven to 
actually work; and the process must be terminated 
when it is unlikely to give worthwhile results. 

02 

route means depends on the density of the region to 
be traversed. If it is mostly open, then the 
problem is to plan to avoid obstacles; if it is 
mostly obstacle, then the problem is to plan to use 
conduits. Either way, the system must find objects 
with known properties (e.g., "open and pointing in 
the right direction" or "filled and lying in my 
way"). 

To summarize, our main results so far are 
these: representing space as a structure of 
multiple frames of reference, within which objects 
have fuzzy positions, is efficient and robust. In 
this context, assimilation is the process of 
constricting fuzz or creating new frames to capture 
a new fact. Route finding involves computing a 
fuzzy vector from where you are to where you want 
to be, then finding objects which can help or 
hinder your progress, and altering the plan to take 
them into account. 

Many problems still remain. The assimilation 
algorithm needs improvement. The route finder has 
not yet been completed or connected with the 
assimilation and retrieval algorithms. As yet we 
have not implemented a (simulated) route executor, 
although this is a high priority. 
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This algorithm for finding objects that might 
have given characteristics is used by our 
route-finding programs. Exactly what finding a 
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