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ABSTRACT 

This paper addresses the process of generating 
examples which meet specified criteria: we call 
this activity CONSTRAINED EXAMPLE GENERATION (CEG). 
We present the motivation for and architecture of an 
existing example generator which solves CEG problems 
in several domains of mathematics and computer 
science, e.g., the generation of LISP test data, 
simple recursive programs, and piecewise linear 
functions. 

II THE CEG MODEL --- 

From protocol analyses of experts and novices 
working CEG problems in mathematics and computer 
science, we developed the following description of 
the CEG task [lOI. When an example is called for, 
one can search through one's storehouse of known 
examples for an example that can be JUDGEd to 
satisfy the desiderata. If a satisfactory match is 
found, then the problem has been solved through 
SEARCH and RETRIEVAL. If a match is not found, one 
can MODIFY an existing example, judged to be close 
or having the potential for fulfilling the 
desiderata. 

If generation through modification fails, one often 
switches to another mode in which one CONSTRUCTS an 
example by instantiating certain models and 
principals or combining more elementary exemplars. 

The CEti model we use thus consists of processes 
that RETRIEVE, JUDGE, MODIFY and CONSTRUCT examples. 

III THE CEG -- SYSTEM 

The CEG system described here is written in 
LISP and runs on a VAX 11/780. In addition to 
solving CEG problems concerning data and simple 
programs in the LISP domain [I1 1, it is being used 
to solve CEG problems in a number of other domains 
1121: the generation of descriptions of scenes for 
use in conjunction with the VISIONS scene 
interpretation system II21; the generation of action 
sequences in games; and the generation of piecewise 
linear functions. 

The flow of control in the Exanple Generator is 
directed by an EXECUTIVE process. In addition, 
there is: (1) the RETRIEVER which searches and 
retrieves examples from a data base of examples; 
(2) the MODIFIER which applies modification 
techniques to an example; (3) the CONS'ER which 
instantiates general "model" examples, such as code 
'lte.mplates" (C91, 1161)~ (4) the JUDGE which 
determines how well an example satisfies the problem 
desiderata; (5) the AGENDA-KEEPER which maintains 
an agenda of examples to be modified, based for 
instance on the degree to which they meet the 
desiderata or possess flepistemological" attributes 
(C81, 191). 

The components use a common knowledge base 
consisting of two parts: a "permanent" knowledge 
base which has an Examples-space 191 containing 
known examples, and a temporary knowledge base which 
-contains information gathered in the solution of a 
specific CEG problem. In the Examples-space, an 
example is represented by a frame, which contains 
information describing various attributes of that 
example, e.g., epistemological class, worth-rating. 
Examples are linked together by the relation of 
nconstructional derivation," i.e., Example 1 ---> 
Example2 means that Exanplel is used in the 
construction of Example2. The temporary knowledge 
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base contains such,information as evaluation data 
generated by the JUDGE and proposed candidate 
examples created from known examples by the 
MODIFIER. 

IV AN EXAMPLE OF A CEG PROBLEM ----VP 

In the context of examples of LISP data 
elements, an example of a simple CEG problem would 
be the followirg: 

Give an example of a LISP list of length 3 
with the depth of its first atom equal to 2. 

(Examples 
teaching.) 

such as this are needed when debugging and 

Suppose the permanent knowledge base only 
contains the lists 

RETRIEVAL phas;hasf;ils), the system enters the 
MODIFICATION 

(A B C), (0 11, (A), ( ); 

Since the list (A B C) 

the first two lists are 

satisfies two of the'three constraints, and thus has 

standard ttreferencelt 
examples, the third, a "start-up" example, and the 
fourth, a known "counter example," i.e., an 

a higher "constraint-satisfaction-count" 

example 
which often 

than the 

is handled 

other examples, it is 

incorrectly by programs. 
Since the knowledge base does not contain an example 

placed 

which completely satisfies the desiderata (i.e., the 

as the top-ranking 
candidate for MODIFICATION by the AGENDA-KEEPER and 
modifications are tried on it first. 

existing example is modified to create a new example 
that is no longer deficient with respect to the 
constraints. For example, if there were more than 
one unsatisfied constraint, one could attempt to 
rectify a candidate example along each of the 
unsatisfied dimensions. Consider the following 
problem: 

Give an example of a list of O’s and l's, 
which is longer than 2, and which has at least 
one element deeper than depth 1. 

One could modify the list (0 1) to meet the 
unsatisfied second and third constraints by adding 
at least one more element, say another 1 to give the 
list (0 1 11, and then modify this new list by 
adding parens around 0r.e of the elements. 
Alternatively, one could add parens and then fix the 
length, or even do both 'at once' by appending on an 
element such as (1) to the original list (0 1). 

In this example, there are many ways to modify 
the original list to meet the constraints, and the 
order of modification does not much matter. One can 
'ldivide-and-conquer'l the work to be done in a 
GPS-like manner of difference-assessment followed by 

However, 

difference-reduction 

in other cases the order of difference 
reduction 

since 

matters greatly. For instance, consider 

the constraints are 
independent [51. 

the problem: 

Give an example of a list of length 5 with an 
embedded sublist of length 2. 

The candidate example, (A B C) is analysed and 
found to be lacking in one respect, namely, the 
depth of its first atom, A, must be made deeper by 
1. The sys tern accomplishes this by adding 
parentheses around the atom A to create the new 
example 

( (A) B C). 

This list meets all the constraints specified; as 
it is a solution to the problem, it is entered into 
the Examples-space as a new example constructionally 
derived from (A B C) . Thus * if the following 
problem is asked of the system, 

Give an example of a list of length 3, the 
depth of the first atom is 2, and the depth of 
the last is 3. 

the system can use the newly constructed 
its attempt to satisfy the new problem. 

example in 

Suppose one is working with the list (A B C>. If 
one first rectifies the length by adding two more 
elements, such as 1 and 2, to create the list (A B C 
1 2 ), and then modifies this list to have the 
needed embedded list by “making-a-group” of length 2 
around any of the first four elements, say to arrive 
atthelist(ABC(12) ),one has also modified 
the length as a side-effect of the grouping 
modification, i.e., one has messed up the length 
constraint. In other circumstances, it possible to 
set up totally contradictory constraints where 
satisfaction of one precludes satisfaction of the 
other. Thus a purely GPS approach is not sufficient 
to handle the complexity of constraint interaction. 
We are currently investigating the constraint 
interaction problem as well as issues concerning 
maintenance of agendas. For example, we are looking 
to employ planning-type control mechanisms for 
dealing with the constraint interaction problem. 
cc 131, C31) 

VI THE LARGER PICTURE --__I_ 
V THE HANDLING OF CONSTRAINTS - 

An application of our CEG system is in an 
The hand 1 ing of constraints is especially intelligent computer-assisted instruction tutoring 

important in the MODIFICATION phase where an environment . We are currently building a tutor to 
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teach students about programming languages such as 
LISP and PASCAL (C143, C151). In this context, CEC 
will serve the tutor in two ways: (1) it will 
generate examples to the specifications set by the 
tutor; and (2) it will evaluate student generated 
examples for the tutor. The same JUDGE used by CEG 
can be used to evaluate a student's example and help 
track down his misconceptions and bugs through 
analyses of differences between what the tutor 
requested and what the student acutually generated. 

In the future, we also plan to incorporate 
adaptation into the system. For example, the system 
can keep track of the performance of the various 
example ordering functions and choose the one that 
has the best performance. Also, we plan to apply 
hill-climbing techniques to the modifying processes 
themselves. That is, since there are alternative 
ways to massage and modify an example, those 
routines which lead to the most succeses should 
eventually be selected first. Adaptation on the 
modification techniques will be particularly 
important if the system is to be able to improve its 
performance, and thus "learn" from its own 
experience. 

The current implementation is only a 
“first-pass” and does not capture the richness of 
the CEG model. Nonetheless, we feel that it has 
demonstrated the utility of this model and we feel 
that subsequent implementations incorporating the 
characteristics of additional task domains should 
provide us with a rich environment to continue our 
investigation into the important process of example 
generation. 

Lll 

[21 

c31 

c43 

c51 
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