
OVERVIEW OF AN EXAMPLE GENERATION SYSTE?l

Edwina L. Rissland
Elliot M. Soloway

Department of Computer and Information Science
University of Massachusetts

Amherst, MA 01003

ABSTRACT

This paper addresses the process of generating
examples which meet specified criteria: we call
this activity CONSTRAINED EXAMPLE GENERATION (CEG).
We present the motivation for and architecture of an
existing example generator which solves CEG problems
in several domains of mathematics and computer
science, e.g., the generation of LISP test data,
simple recursive programs, and piecewise linear
functions.

II THE CEG MODEL ---

From protocol analyses of experts and novices
working CEG problems in mathematics and computer
science, we developed the following description of
the CEG task [lOI. When an example is called for,
one can search through one's storehouse of known
examples for an example that can be JUDGEd to
satisfy the desiderata. If a satisfactory match is
found, then the problem has been solved through
SEARCH and RETRIEVAL. If a match is not found, one
can MODIFY an existing example, judged to be close
or having the potential for fulfilling the
desiderata.

If generation through modification fails, one often
switches to another mode in which one CONSTRUCTS an
example by instantiating certain models and
principals or combining more elementary exemplars.

The CEti model we use thus consists of processes
that RETRIEVE, JUDGE, MODIFY and CONSTRUCT examples.

III THE CEG -- SYSTEM

The CEG system described here is written in
LISP and runs on a VAX 11/780. In addition to
solving CEG problems concerning data and simple
programs in the LISP domain [I1 1, it is being used
to solve CEG problems in a number of other domains
1121: the generation of descriptions of scenes for
use in conjunction with the VISIONS scene
interpretation system II21; the generation of action
sequences in games; and the generation of piecewise
linear functions.

The flow of control in the Exanple Generator is
directed by an EXECUTIVE process. In addition,
there is: (1) the RETRIEVER which searches and
retrieves examples from a data base of examples;
(2) the MODIFIER which applies modification
techniques to an example; (3) the CONS'ER which
instantiates general "model" examples, such as code
'lte.mplates" (C91, 1161)~ (4) the JUDGE which
determines how well an example satisfies the problem
desiderata; (5) the AGENDA-KEEPER which maintains
an agenda of examples to be modified, based for
instance on the degree to which they meet the
desiderata or possess flepistemological" attributes
(C81, 191).

The components use a common knowledge base
consisting of two parts: a "permanent" knowledge
base which has an Examples-space 191 containing
known examples, and a temporary knowledge base which
-contains information gathered in the solution of a
specific CEG problem. In the Examples-space, an
example is represented by a frame, which contains
information describing various attributes of that
example, e.g., epistemological class, worth-rating.
Examples are linked together by the relation of
nconstructional derivation," i.e., Example 1 --->
Example2 means that Exanplel is used in the
construction of Example2. The temporary knowledge

256

base contains such,information as evaluation data
generated by the JUDGE and proposed candidate
examples created from known examples by the
MODIFIER.

IV AN EXAMPLE OF A CEG PROBLEM ----VP

In the context of examples of LISP data
elements, an example of a simple CEG problem would
be the followirg:

Give an example of a LISP list of length 3
with the depth of its first atom equal to 2.

(Examples
teaching.)

such as this are needed when debugging and

Suppose the permanent knowledge base only
contains the lists

RETRIEVAL phas;hasf;ils), the system enters the
MODIFICATION

(A B C), (0 11, (A), ();

Since the list (A B C)

the first two lists are

satisfies two of the'three constraints, and thus has

standard ttreferencelt
examples, the third, a "start-up" example, and the
fourth, a known "counter example," i.e., an

a higher "constraint-satisfaction-count"

example
which often

than the

is handled

other examples, it is

incorrectly by programs.
Since the knowledge base does not contain an example

placed

which completely satisfies the desiderata (i.e., the

as the top-ranking
candidate for MODIFICATION by the AGENDA-KEEPER and
modifications are tried on it first.

existing example is modified to create a new example
that is no longer deficient with respect to the
constraints. For example, if there were more than
one unsatisfied constraint, one could attempt to
rectify a candidate example along each of the
unsatisfied dimensions. Consider the following
problem:

Give an example of a list of O’s and l's,
which is longer than 2, and which has at least
one element deeper than depth 1.

One could modify the list (0 1) to meet the
unsatisfied second and third constraints by adding
at least one more element, say another 1 to give the
list (0 1 11, and then modify this new list by
adding parens around 0r.e of the elements.
Alternatively, one could add parens and then fix the
length, or even do both 'at once' by appending on an
element such as (1) to the original list (0 1).

In this example, there are many ways to modify
the original list to meet the constraints, and the
order of modification does not much matter. One can
'ldivide-and-conquer'l the work to be done in a
GPS-like manner of difference-assessment followed by

However,

difference-reduction

in other cases the order of difference
reduction

since

matters greatly. For instance, consider

the constraints are
independent [51.

the problem:

Give an example of a list of length 5 with an
embedded sublist of length 2.

The candidate example, (A B C) is analysed and
found to be lacking in one respect, namely, the
depth of its first atom, A, must be made deeper by
1. The sys tern accomplishes this by adding
parentheses around the atom A to create the new
example

((A) B C).

This list meets all the constraints specified; as
it is a solution to the problem, it is entered into
the Examples-space as a new example constructionally
derived from (A B C) . Thus * if the following
problem is asked of the system,

Give an example of a list of length 3, the
depth of the first atom is 2, and the depth of
the last is 3.

the system can use the newly constructed
its attempt to satisfy the new problem.

example in

Suppose one is working with the list (A B C>. If
one first rectifies the length by adding two more
elements, such as 1 and 2, to create the list (A B C
1 2), and then modifies this list to have the
needed embedded list by “making-a-group” of length 2
around any of the first four elements, say to arrive
atthelist(ABC(12)),one has also modified
the length as a side-effect of the grouping
modification, i.e., one has messed up the length
constraint. In other circumstances, it possible to
set up totally contradictory constraints where
satisfaction of one precludes satisfaction of the
other. Thus a purely GPS approach is not sufficient
to handle the complexity of constraint interaction.
We are currently investigating the constraint
interaction problem as well as issues concerning
maintenance of agendas. For example, we are looking
to employ planning-type control mechanisms for
dealing with the constraint interaction problem.
cc 131, C31)

VI THE LARGER PICTURE --__I_
V THE HANDLING OF CONSTRAINTS -

An application of our CEG system is in an
The hand 1 ing of constraints is especially intelligent computer-assisted instruction tutoring

important in the MODIFICATION phase where an environment . We are currently building a tutor to

257

teach students about programming languages such as
LISP and PASCAL (C143, C151). In this context, CEC
will serve the tutor in two ways: (1) it will
generate examples to the specifications set by the
tutor; and (2) it will evaluate student generated
examples for the tutor. The same JUDGE used by CEG
can be used to evaluate a student's example and help
track down his misconceptions and bugs through
analyses of differences between what the tutor
requested and what the student acutually generated.

In the future, we also plan to incorporate
adaptation into the system. For example, the system
can keep track of the performance of the various
example ordering functions and choose the one that
has the best performance. Also, we plan to apply
hill-climbing techniques to the modifying processes
themselves. That is, since there are alternative
ways to massage and modify an example, those
routines which lead to the most succeses should
eventually be selected first. Adaptation on the
modification techniques will be particularly
important if the system is to be able to improve its
performance, and thus "learn" from its own
experience.

The current implementation is only a
“first-pass” and does not capture the richness of
the CEG model. Nonetheless, we feel that it has
demonstrated the utility of this model and we feel
that subsequent implementations incorporating the
characteristics of additional task domains should
provide us with a rich environment to continue our
investigation into the important process of example
generation.

Lll

[21

c31

c43

c51

REFERENCES

Bledsoe, W. (1977) A Maximal Method for Set
Variables in Automatic Theorem Proving, Univ.
of Texas at Austin, Math Dept. Memo ATP-33.

Hanson, A. and Riseman E. (1978) VISIONS: A
Computer System for Interpreting Scenes, in
Computer Vision Systems, Hanson and Riseman,
Eds. t Academic Press, New York.

Hayes-Roth, B., ar,d F. Hayes-Roth (1978)
Cognitive Process in Planning, Rand Report
R-2366-ONR, The Rand Corporation, CA.

Lakatos, I. (1963) Proofs and Refutations, - -
British Journal for the Philosophy of Science,
Vol. 19, May 1963. Also published by
Cambridge University Press, London, 1976.

Newell, A., Shaw, J., and Simon, H. (1959)
Report on a General Problem-Solving Program.
Proc. of the International Conference on
Information Processing. UNESCO House, Paris.

163 Polya, G . (1973) now To Solve St, Second
Edition, Princeton UXJ. Press, N.J,

E7l Polya, G. (1968) Mathematics and Plausible
Reasoning, Volunes I and II, S&?&d Edition,
Princeton Univ. Press, N.J.

C83 Rissland (Michener) , E. (1978a) Understanding
Understanding Mathematics, Cognitive Science,
Vol. 2, No. 4.

[91 Rissland (Michener), E. (1978b) The Structure
of Mathematical Knowledge, Technical Report No.
472, M.1.T Artificial Intelligence Lab,
Cambridge.

Cl01 Rissland, E. (1979) Protocols of Ex mple
Generation 1 internal report, M.I.T., Cambr idge.

[ill Rissland, E. and E. Soloway (1980) Generating
Examples in LISP: Data and Programs, COINS
Technical Report 80-07, Univ. of Mass,
(submitted for publication).

Cl21 Rissland, E., Soloway, E. , O’Connor, S.,
Waisbrot, S., Wall, R. , Wesley, L., and T.
Weymouth (1980) Examples of Exaple Generation
using the CEG Architecture. COINS Technical
Report, in preparation.

cl31 Sacerdoti, E. (1975) The Nonlinear Nature of
Plans, Proc. 4th. Int. Joint Conf.
Artificial Intelligence, Tbilisi, USSR.

Cl41 Soloway. E. (1980) The Development and
Ev aluafiion of Instructional Strategies for an
Intelligent Computer-Assisted Instruction
System, COINS Technical Report 80-04, Univ. of
Mass., Amherst.

El51 Soloway, E., and E. Rissland (1980) The
Representation ar,d Organization of a Knowledge
Base About LISP Programming for an ICAI System,
COINS Technical Report 80-08, Univ of Mass., in
preparation.

[161 Soloway, E., and Woolf, B. (1980) Problems,
Plans and Programs, Proc. of the ACM Eleventh
SIGCSE Technical Symposium, Kansas City.

258

