
STRUCTURE COMPARISON AND SEMANTIC INTERPRETATION OF DIFFERENCES*

Wellington Yu Chiu

USC Information Sciences Institute

4676 Admiralty Way

Marina de1 Roy, California 90291

ABSTRACT

Frequently situations are encountered where the ability to

differentiate between objects is necessary. The typical situation

is one in which one is in a current state and wishes to achieve a

goal state. Abstractly, the problem we shall address is that of

comparing two data structures

between the two structures.

work well in determining all

of addressing the semantic

syntactic

issues.

and determining all

Current comparison

differences

techniques

differences but fall short

We address this gap by

applying Al techniques that yield semantic interpretations of

differences.

I INTRODUCTION

One frequently encounters situations where the ability to

differentiate between objects is necessary. The typical situation

is one in which one is in a current state and wishes to achieve a

goal state. Such situations are encountered under several

guises in our transformation based programming system

research [I, 2, 31. A simple case is one in which we are given

two program states and need to discover the changes from one

to the other. Another case is one in which a transformation we

wish to apply to effect a desired change does not match in the

current state and one wishes to identify the differences. An

extension of this second case is the situation where a sequence

of transformations, called a development, is to be applied to

(replayed on) a slightly different problem.

Abstractly, the problem we shall address is that of comparing

two data structures and determining all differences between the

two structures. Current comparison techniques

determining all syntactic differences but fall short

the semantic issues.

situations, comparisons

address this gap by applying
interpretations of differences.

work well in

of addressing

In the replay and state differencing

must be more semantically oriented. We

This paper describes a

semantic based differencer

Al techniques that yield semantic

part of my thesis: the design

and its ongoing implementation.

of a

* This work woa rupportrd by Nitional Scknce
the viowr cwpremed are thaw of thr author.

Foundation Grant MCS 7683880.

II AN EXAMPLE --

The following example is presented to show the types of

information used to infer and deduce the semantic differences.

Below are the before and after program states from a

transformational development [1 J.

BEFORE :
uhile there exists character in text do 1

if character is linefeed 2
then replace character in text by space:3

uhile there exists character in text do
i f Pfcharacter) :

then remove character from text: 6

AFTER:
while there exists character in text do
begin ;:

if character is Iinefeed
then replace character in text by space: :

if character in text then e
i f P (character) f

then remove character from text
end: h9

The after state above was produced from the before state via

application of a transformation but the following explanations of

differences were generated without knowledge of the

transformation.

- The current syntactic differencing techniques
[4, 5, 6, 7, 8, 9, lo] typically explain differences in
the following terms:

For BEFORE:
Delete while in line 4
Delete there in line 4

For AFT&I:’ ’
Insert if in line f
Insert then in line f
. * .

- A higher level syntactic explanation is achieved by
generalizing and combining the techniques for
syntactic differencing to explain differences in
terms of embeds, extracts, swaps and associations,
in addition to inserts and deletes, and by
incorporating syntactic information about the
structures being compared [3]

The second loop is coerced into
a conditional.

259

The conditional is embedded into
the first loop,

trees for 23, 5,6 and c,d,f,g are loop generators.

- The proposed explanation of the semantic
difference is:

Loops merged.

The following is the derivation of the syntactic explanation. It

- Infer the similarity of 5,6 to e,f,g from the syntactic
equivalence of 5,6 to f,g. 5,6 embedded in a test
for generator consistency inferred from semantic
knowledge of loop merging.

- Conclusion: Loops merged.

is presented to show the mechanisms upon which the semantic

differencer will be based.

- Syntactically, 2,3 (first loop body of the before
state) is equivalent to c,d (part of the loop body of
the after state) and 5,6 is equivalent to f,g.

- Infer composite structure 1,2,3 similar to composite
structure a,b,c,d,e,f,g,h based on 2,3 being
equivalent to c,d.

- tnfer an embed of composite structure 4,5,6 into the
composite structure 1,2,3 to produce a,b,c,d,e,f,g.
The support for this inference comes from 5,6
being equivalent to f,g, the adjacency of 1,2,3 to
4,5,6, and the adjacency of c,d to f,g.

- Infer coercion of loop 4,5,6 to conditional e,f,g
based on 5,6 being equivalent to f,g, and the
similarity of the loop generator to the conditional
predicate.

- Conclude second loop embedded in the first loop.

Our current syntactic differencer produces this type of

difference explanation. It exte_nds the techniques currently

The explanation generated by our syntactic clifferencer is not

plausible because i? doesn’t make sense to transform a loop into

a conditional only to embed this new conditional into a similar

loop. The following is the desired explanation: The body of the

decond loop is embedded in a conditional that tests for loop

generator consistency. This is done without changing the

functionality of the body. The two adjacent loops can now be

merged subject to any side effects, caused by the first loop

body, that will not be caught by the loop generator consistency

check around the second loop body.

Ill DESIGN OF THE SEMANTIC BASED DIFFERENCER -e--p

We start by defining relations (profiles) on objects, where

objects are the substructures of the structures we are

comparing (see Appendix A). The information provided by this

profile consists of:

- Sequence of nonterminals from the left hand side of
productions used in generating the context tree of
the substructure. A context tree (i.e. super tree) is
that part of the parse tree with the substructure
part deleted.

available by imposing structure on the text strings being

advance, the explanations fall short of the desired semantics of

compared, thereby making use of structural constraints and the

the changes. In the SCENARIO section below, an explanation

extra structural dimensions in its analysis [3]. Despite this

- The sequence of productions used in the derivation
of the substructure, given the context tree above
as the starting point.

Positional information.

from the proposed semantic based differencer is presented.

The domain we are dealing with is one where changes are

made for the following reasons:

1. To optimize code

Our syntactic differencer makes use of the information provided

by the object profile to determine base matches. The

techniques used in the differencer to determine base matches

are combinations of the common unique, common residual and

common super tree techniques described in [3, 4, 6, 7, lo].

2. TO prepare code for optimization.
Below is a brief description of the common unique and common

residual techniques for linear structures.

Within such a domain, we can use the constraints on the

semantics of changes to derive the semantic explanation “loop

merged” and at the same time rule out the syntactic explanation.

- Longest Common Subsequence (LCS): The main
coniern with LCS is that .of finding the minimal edit
distance between two linear structures. The only
edit ooerations allowed are: delete a substructure,

Building on the mechanisms that generated the derivation above, or insert a substructure [6, 81. For the above

the following is a proposed derivation of the comparison that example, the LCS is: 1,2,3,5,6 matching a,c,d,f,g.

yield the semantic interpretation “loops merged”. - Common Unique KU): The key to this technique the

- Syntactically, 2,3 (the first loop body) is equivalent
to c,d and 5,6 (the second loop body) is equivalent
to f,g. The context trees (i.e. super trees)
containing 2,3 and 5,6 and the context tree for
c,d,f,g are the same. Infer FACTORING of context
trees with supports being the 2 to 1 mapping of
substructures and the equivalence of context trees.

use of substructures that are common to both
structures and unique within each as anchors [4].
For the above example, the common unique
substructures are: linefeed, replace, space, P,
remove.

We then build on these base matches by inferring matches of

- Infer loop merge from the fact that the context
substructures that contain substructures that are matches. An

example of this is inferring that 1,2,3 is similar to a,b,c,d,e,f,g,h

260

from the assertion that 2,3 matches c,d. There are two types Of

inferred matches: those without syntactic boundary conflicts

and those with conflicts. Syntactic boundary conflicts result

from embedding, extracting or associating substructures.

The third type of profile is one that describes the relationship

between substructures within a given structure. Considerations

here are: adjacency, containment, and relative positioning.

There are several semantic rules that describe a majority of

structure changes. Some are: factoring, distributing, commuting,

associating, extracting, embedding, folding, and unfolding. A

oartial description of the factor semantics can be found in

Appendix A. Factors currently considered by our semantic rules

are: support for matches, the generating grammar, object

profiles, and relations between substructures of the same

structure. With each set of examples tried, we add to our set of

semantic rules, and our intuitive guess, given our domain of

changes due to optimization or preparation for optimization, is

that this set will be fairly small when compared to the set of

transformations needed in a transformation based programming

system.

IV A SCENARIO --

Our syntactic differencer makes use of structural information.

For LISP programs it know about S-expressions. For programs

written in our specification language, differencing is performed

on the parse trees. The differencer first tries to isolate

differences into the smallest composite substructure containing

all changes. With this reduced scope, the differencer uses the

common unique technique to assert relations on content base

matches. In our example, substructure 2,3 is equivalent to c,d

and substructure 5,6 is equivalent to f,g.

Once all of these possible assertions have been made, we use

them as anchors to assert relations based on positional

constraint and content matches (residual structure matches).

This residual technique works well as a relaxation of the

uniqueness condition in the common unique requirement, and

acts as a backup in case no substructures are common to both

structures and unique within each. The super tree technique is

used as a default when neither of the above techniques applies.

The intuitive explanation for this third technique has to do with

both objects occupying the same position with respect to a

common super tree. With the super tree technique, content

equivalence is relaxed.

With the two asserted relations regarding substructures 2,3

being equivalent to c,d and 5,6 being equivalent to f,g, we now

infer that 4,5,6 is similar to e,f,g because 5,6 is common unique

with f,g and without conflicting evidence (i.e. boundary

violations) the assertion is made. Once made, further analysis of

this reduced scope shows relationships between the loop

generator 4 and the conditional predicate e.

Since we are given, via the super tree technique, that

1,2,3,4,5,6 matches a,b,c,d,e,f,g,h we assert the inference 2,3 to

c,d even though conflicts due to boundary violations arise. The

boundary violation in this instance is the mapping of two

substructures into one (i.e. the segmental or n-m problem).

Given that we want to produce all plausible explanations, we

assert that 1,2,3 is similar to a,b,c,d,e,f,g,h because 2,3 and c,d

are common unique matches. With this assertion, we could with

our Embed Semantics say that the second loop is embedded in

the first. But our knowledge about optimizations makes more

plausible the Factor Semantics that is triggered by the

segmental matching.

When the Factor Semantics is triggered, the relationships

within a given structure, such as adjacency and relative

positioning, are asserted (see Appendix A). All the requirements

except for body2 being equivalent to body4 are met. But once

the cases are considered, we discover that the operator being

factored is indeed a loop generator and that we can relax the

requirement that body2 be equivalent to body4 to that of

similarity of the two bodies. This follows from the support for

Final analysis the relationship between body2 and body4.

reveals that body2 is embedded in body4.

V CONCLUSION

Given the small example above, we see that the derivation of

the semantic difference involves syntactic and semantic

knowledge of the structure domain as well as techniques for

managing and applying the knowledge. We present a design that

addresses the issue of managing and applying both syntactic and

semantic knowledge of the structures being compared so as to

provide a semantic interpretation of changes. This allows us to

bridge the gap that exists between the information provided by

current differencers and the information needed by current

differencing tasks.

VI APPENDIX A: --
TEMPLATES FROM THE SEMANTIC DIFFERENCER ----I__

Every substructure of the structures being compared has

associated with it an Object Profile that is an record with the

following role names as fields:

Content: Value of the substructure.

Type Context: Sequence of nonterminals of
productions, of the grammar, used
in the derivation of the
substructure.

Posi t ional Position in parse tree. (i.e. a
Context: sequence of directions in reaching

the substructure from the root of
the parse tree.

Abetraction: If a grammar is used to generate the
substructure, this refers to the
sequence of productions used to
generate the substructure itself.

261

A Relation Profile describes the relationships between two

substructures, one from each of the structures being compared.

The role names of this record are:

Base Content (i.e. common unique)
Matches: Context (i.e. positional determined

from context trees)

Positional constraint and Content
(i.e. from the largest common
residual substructure technique
where uniqueness of context
matches is relaxed).

Inferred Conflict free (i.e. no syntactic
Matches: boundary violations)

With conflicts (inferences depends on
heuristics regarding current
substructure abstraction and
weights associated with
substructure matches).

Happ i ngs: l-l substructure matches
2-1 substructure matches
n-m substructure matches

A second relation profile is one between substructures within

a given structure. Some of the considerations here are:

adjacency of two substructures, containment, and relative

positioning.

There are several semantic rules that describe a majority of

structure changes. Some are factoring, distributing, commuting,

associating, extracting, embedding, folding and unfolding. Below

is a partial description of the Factor Semantics used in

generating the semantic interpretation above:

FACTOR SEllANTICS:
FORM: LHS: opl body1

op2 body2
RI-IS: op3 body3 body4

KEY: Segmental matching

REDUIREMENTS:
requirements opl=opZ
requirements opl =op3
requirements bodyl=body3
requirements bodyZ=body4
requirement9 relative positioning of

body1 to body2 holds for
body3 to body4

requirements adjacency of body1 to
body2 holds for body3 to
body4

CASES :
opl is a loop generator

relaxations body2=body4 relaxed to
body2 similar to body4

RELAXATIONS:
relaxations adjacency requirement
relaxations relative positioning
relaxations equivalence (=I to similar

VII REFERENCES

1. Baiter, R., Goldman, N., and Wile, D., “On the
Transformational Implementation Approach to Programming,”
in Second International Conference on Software
Engineering, pp. 337-344, IEEE, October 1976.

2. Balzer, R., Transformational Implementation: An Example,
Information Sciences Institute, Research Report 79-79,
September 1979.

3. Chiu, W., Structure Comparison, 1979. Presented at the
Second International Transformational Implementation
Workshop in Boston, September, 1979.

4. Heckel, P., “A Technique for Isolating Differences Between
Files,” Communications of the ACM 21, (41, April 1978,
264-268.

5. Hirschberg, D., The Longest Common Subsequence Problem,
Ph.D. thesis, Princeton University, August 1975.

6. Hirschberg, D., “Algorithms for the Longest Common
Subsequence Problem,” journal of the ACM 24, (41, October
1977, 664-675.

7. Hunt, J., An Algorithm for Differential file Comparison, Bell
Laboratories, Computer Science Technical Report 41, 1976.

8. Hunt, J., “A Fast Algorithm for Computing Longest Common
Subsequences,” Communications of the ACM 20, (51, May
1977,350-353.

9. Tai, K., Syntactic Error Correction in Programming
Languages, Ph.D. thesis, Cornell University, January 1977.

10. Tai, K., “The Tree-to-Tree Correction Problem,” Journal of
the ACM 26, (3), July 1979, 422-433.

262

