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ABSTRACT 

Frequently situations are encountered where the ability to 

differentiate between objects is necessary. The typical situation 

is one in which one is in a current state and wishes to achieve a 

goal state. Abstractly, the problem we shall address is that of 

comparing two data structures 

between the two structures. 
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I INTRODUCTION 

One frequently encounters situations where the ability to 

differentiate between objects is necessary. The typical situation 

is one in which one is in a current state and wishes to achieve a 

goal state. Such situations are encountered under several 

guises in our transformation based programming system 

research [I, 2, 31. A simple case is one in which we are given 

two program states and need to discover the changes from one 

to the other. Another case is one in which a transformation we 

wish to apply to effect a desired change does not match in the 

current state and one wishes to identify the differences. An 

extension of this second case is the situation where a sequence 

of transformations, called a development, is to be applied to 

(replayed on) a slightly different problem. 

Abstractly, the problem we shall address is that of comparing 

two data structures and determining all differences between the 

two structures. Current comparison techniques 

determining all syntactic differences but fall short 

the semantic issues. 
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II AN EXAMPLE -- 

The following example is presented to show the types of 

information used to infer and deduce the semantic differences. 

Below are the before and after program states from a 

transformational development [ 1 J. 

BEFORE : 
uhile there exists character in text do 1 

if character is linefeed 2 
then replace character in text by space:3 

uhile there exists character in text do 
i f Pfcharacter) : 

then remove character from text: 6 

AFTER: 
while there exists character in text do 
begin ;: 

if character is Iinefeed 
then replace character in text by space: : 

if character in text then e 
i f P (character) f 

then remove character from text 
end: h9 

The after state above was produced from the before state via 

application of a transformation but the following explanations of 

differences were generated without knowledge of the 

transformation. 

- The current syntactic differencing techniques 
[4, 5, 6, 7, 8, 9, lo] typically explain differences in 
the following terms: 

For BEFORE: 
Delete while in line 4 
Delete there in line 4 

For AFT&I:’ ’ 
Insert if in line f 
Insert then in line f 
. * . 

- A higher level syntactic explanation is achieved by 
generalizing and combining the techniques for 
syntactic differencing to explain differences in 
terms of embeds, extracts, swaps and associations, 
in addition to inserts and deletes, and by 
incorporating syntactic information about the 
structures being compared [3] 

The second loop is coerced into 
a conditional. 
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The conditional is embedded into 
the first loop, 

trees for 23, 5,6 and c,d,f,g are loop generators. 

- The proposed explanation of the semantic 
difference is: 

Loops merged. 

The following is the derivation of the syntactic explanation. It 

- Infer the similarity of 5,6 to e,f,g from the syntactic 
equivalence of 5,6 to f,g. 5,6 embedded in a test 
for generator consistency inferred from semantic 
knowledge of loop merging. 

- Conclusion: Loops merged. 

is presented to show the mechanisms upon which the semantic 

differencer will be based. 

- Syntactically, 2,3 (first loop body of the before 
state) is equivalent to c,d (part of the loop body of 
the after state) and 5,6 is equivalent to f,g. 

- Infer composite structure 1,2,3 similar to composite 
structure a,b,c,d,e,f,g,h based on 2,3 being 
equivalent to c,d. 

- tnfer an embed of composite structure 4,5,6 into the 
composite structure 1,2,3 to produce a,b,c,d,e,f,g. 
The support for this inference comes from 5,6 
being equivalent to f,g, the adjacency of 1,2,3 to 
4,5,6, and the adjacency of c,d to f,g. 

- Infer coercion of loop 4,5,6 to conditional e,f,g 
based on 5,6 being equivalent to f,g, and the 
similarity of the loop generator to the conditional 
predicate. 

- Conclude second loop embedded in the first loop. 

Our current syntactic differencer produces this type of 

difference explanation. It exte_nds the techniques currently 

The explanation generated by our syntactic clifferencer is not 

plausible because i? doesn’t make sense to transform a loop into 

a conditional only to embed this new conditional into a similar 

loop. The following is the desired explanation: The body of the 

decond loop is embedded in a conditional that tests for loop 

generator consistency. This is done without changing the 

functionality of the body. The two adjacent loops can now be 

merged subject to any side effects, caused by the first loop 

body, that will not be caught by the loop generator consistency 

check around the second loop body. 

Ill DESIGN OF THE SEMANTIC BASED DIFFERENCER -e--p 

We start by defining relations (profiles) on objects, where 

objects are the substructures of the structures we are 

comparing (see Appendix A). The information provided by this 

profile consists of: 

- Sequence of nonterminals from the left hand side of 
productions used in generating the context tree of 
the substructure. A context tree (i.e. super tree) is 
that part of the parse tree with the substructure 
part deleted. 

available by imposing structure on the text strings being 

advance, the explanations fall short of the desired semantics of 

compared, thereby making use of structural constraints and the 

the changes. In the SCENARIO section below, an explanation 

extra structural dimensions in its analysis [3]. Despite this 

- The sequence of productions used in the derivation 
of the substructure, given the context tree above 
as the starting point. 

Positional information. 

from the proposed semantic based differencer is presented. 

The domain we are dealing with is one where changes are 

made for the following reasons: 

1. To optimize code 

Our syntactic differencer makes use of the information provided 

by the object profile to determine base matches. The 

techniques used in the differencer to determine base matches 

are combinations of the common unique, common residual and 

common super tree techniques described in [3, 4, 6, 7, lo]. 

2. TO prepare code for optimization. 
Below is a brief description of the common unique and common 

residual techniques for linear structures. 

Within such a domain, we can use the constraints on the 

semantics of changes to derive the semantic explanation “loop 

merged” and at the same time rule out the syntactic explanation. 

- Longest Common Subsequence (LCS): The main 
coniern with LCS is that .of finding the minimal edit 
distance between two linear structures. The only 
edit ooerations allowed are: delete a substructure, 

Building on the mechanisms that generated the derivation above, or insert a substructure [6, 81. For the above 

the following is a proposed derivation of the comparison that example, the LCS is: 1,2,3,5,6 matching a,c,d,f,g. 

yield the semantic interpretation “loops merged”. - Common Unique KU): The key to this technique the 

- Syntactically, 2,3 (the first loop body) is equivalent 
to c,d and 5,6 (the second loop body) is equivalent 
to f,g. The context trees (i.e. super trees) 
containing 2,3 and 5,6 and the context tree for 
c,d,f,g are the same. Infer FACTORING of context 
trees with supports being the 2 to 1 mapping of 
substructures and the equivalence of context trees. 

use of substructures that are common to both 
structures and unique within each as anchors [4]. 
For the above example, the common unique 
substructures are: linefeed, replace, space, P, 
remove. 

We then build on these base matches by inferring matches of 

- Infer loop merge from the fact that the context 
substructures that contain substructures that are matches. An 

example of this is inferring that 1,2,3 is similar to a,b,c,d,e,f,g,h 
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from the assertion that 2,3 matches c,d. There are two types Of 

inferred matches: those without syntactic boundary conflicts 

and those with conflicts. Syntactic boundary conflicts result 

from embedding, extracting or associating substructures. 

The third type of profile is one that describes the relationship 

between substructures within a given structure. Considerations 

here are: adjacency, containment, and relative positioning. 

There are several semantic rules that describe a majority of 

structure changes. Some are: factoring, distributing, commuting, 

associating, extracting, embedding, folding, and unfolding. A 

oartial description of the factor semantics can be found in 

Appendix A. Factors currently considered by our semantic rules 

are: support for matches, the generating grammar, object 

profiles, and relations between substructures of the same 

structure. With each set of examples tried, we add to our set of 

semantic rules, and our intuitive guess, given our domain of 

changes due to optimization or preparation for optimization, is 

that this set will be fairly small when compared to the set of 

transformations needed in a transformation based programming 

system. 

IV A SCENARIO -- 

Our syntactic differencer makes use of structural information. 

For LISP programs it know about S-expressions. For programs 

written in our specification language, differencing is performed 

on the parse trees. The differencer first tries to isolate 

differences into the smallest composite substructure containing 

all changes. With this reduced scope, the differencer uses the 

common unique technique to assert relations on content base 

matches. In our example, substructure 2,3 is equivalent to c,d 

and substructure 5,6 is equivalent to f,g. 

Once all of these possible assertions have been made, we use 

them as anchors to assert relations based on positional 

constraint and content matches (residual structure matches). 

This residual technique works well as a relaxation of the 

uniqueness condition in the common unique requirement, and 

acts as a backup in case no substructures are common to both 

structures and unique within each. The super tree technique is 

used as a default when neither of the above techniques applies. 

The intuitive explanation for this third technique has to do with 

both objects occupying the same position with respect to a 

common super tree. With the super tree technique, content 

equivalence is relaxed. 

With the two asserted relations regarding substructures 2,3 

being equivalent to c,d and 5,6 being equivalent to f,g, we now 

infer that 4,5,6 is similar to e,f,g because 5,6 is common unique 

with f,g and without conflicting evidence (i.e. boundary 

violations) the assertion is made. Once made, further analysis of 

this reduced scope shows relationships between the loop 

generator 4 and the conditional predicate e. 

Since we are given, via the super tree technique, that 

1,2,3,4,5,6 matches a,b,c,d,e,f,g,h we assert the inference 2,3 to 

c,d even though conflicts due to boundary violations arise. The 

boundary violation in this instance is the mapping of two 

substructures into one (i.e. the segmental or n-m problem). 

Given that we want to produce all plausible explanations, we 

assert that 1,2,3 is similar to a,b,c,d,e,f,g,h because 2,3 and c,d 

are common unique matches. With this assertion, we could with 

our Embed Semantics say that the second loop is embedded in 

the first. But our knowledge about optimizations makes more 

plausible the Factor Semantics that is triggered by the 

segmental matching. 

When the Factor Semantics is triggered, the relationships 

within a given structure, such as adjacency and relative 

positioning, are asserted (see Appendix A). All the requirements 

except for body2 being equivalent to body4 are met. But once 

the cases are considered, we discover that the operator being 

factored is indeed a loop generator and that we can relax the 

requirement that body2 be equivalent to body4 to that of 

similarity of the two bodies. This follows from the support for 

Final analysis the relationship between body2 and body4. 

reveals that body2 is embedded in body4. 

V CONCLUSION 

Given the small example above, we see that the derivation of 

the semantic difference involves syntactic and semantic 

knowledge of the structure domain as well as techniques for 

managing and applying the knowledge. We present a design that 

addresses the issue of managing and applying both syntactic and 

semantic knowledge of the structures being compared so as to 

provide a semantic interpretation of changes. This allows us to 

bridge the gap that exists between the information provided by 

current differencers and the information needed by current 

differencing tasks. 

VI APPENDIX A: -- 
TEMPLATES FROM THE SEMANTIC DIFFERENCER ----I__ 

Every substructure of the structures being compared has 

associated with it an Object Profile that is an record with the 

following role names as fields: 

Content: Value of the substructure. 

Type Context: Sequence of nonterminals of 
productions, of the grammar, used 
in the derivation of the 
substructure. 

Posi t ional Position in parse tree. (i.e. a 
Context: sequence of directions in reaching 

the substructure from the root of 
the parse tree. 

Abetraction: If a grammar is used to generate the 
substructure, this refers to the 
sequence of productions used to 
generate the substructure itself. 
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A Relation Profile describes the relationships between two 

substructures, one from each of the structures being compared. 

The role names of this record are: 

Base Content (i.e. common unique) 
Matches: Context (i.e. positional determined 

from context trees) 

Positional constraint and Content 
(i.e. from the largest common 
residual substructure technique 
where uniqueness of context 
matches is relaxed). 

Inferred Conflict free (i.e. no syntactic 
Matches: boundary violations) 

With conflicts (inferences depends on 
heuristics regarding current 
substructure abstraction and 
weights associated with 
substructure matches). 

Happ i ngs: l-l substructure matches 
2-1 substructure matches 
n-m substructure matches 

A second relation profile is one between substructures within 

a given structure. Some of the considerations here are: 

adjacency of two substructures, containment, and relative 

positioning. 

There are several semantic rules that describe a majority of 

structure changes. Some are factoring, distributing, commuting, 

associating, extracting, embedding, folding and unfolding. Below 

is a partial description of the Factor Semantics used in 

generating the semantic interpretation above: 

FACTOR SEllANTICS: 
FORM: LHS: opl body1 

op2 body2 
RI-IS: op3 body3 body4 

KEY: Segmental matching 

REDUIREMENTS: 
requirements opl=opZ 
requirements opl =op3 
requirements bodyl=body3 
requirements bodyZ=body4 
requirement9 relative positioning of 

body1 to body2 holds for 
body3 to body4 

requirements adjacency of body1 to 
body2 holds for body3 to 
body4 

CASES : 
opl is a loop generator 

relaxations body2=body4 relaxed to 
body2 similar to body4 

RELAXATIONS: 
relaxations adjacency requirement 
relaxations relative positioning 
relaxations equivalence (=I to similar 

VII REFERENCES 

1. Baiter, R., Goldman, N., and Wile, D., “On the 
Transformational Implementation Approach to Programming,” 
in Second International Conference on Software 
Engineering, pp. 337-344, IEEE, October 1976. 

2. Balzer, R., Transformational Implementation: An Example, 
Information Sciences Institute, Research Report 79-79, 
September 1979. 

3. Chiu, W., Structure Comparison, 1979. Presented at the 
Second International Transformational Implementation 
Workshop in Boston, September, 1979. 

4. Heckel, P., “A Technique for Isolating Differences Between 
Files,” Communications of the ACM 21, (41, April 1978, 
264-268. 

5. Hirschberg, D., The Longest Common Subsequence Problem, 
Ph.D. thesis, Princeton University, August 1975. 

6. Hirschberg, D., “Algorithms for the Longest Common 
Subsequence Problem,” journal of the ACM 24, (41, October 
1977, 664-675. 

7. Hunt, J., An Algorithm for Differential file Comparison, Bell 
Laboratories, Computer Science Technical Report 41, 1976. 

8. Hunt, J., “A Fast Algorithm for Computing Longest Common 
Subsequences,” Communications of the ACM 20, (51, May 
1977,350-353. 

9. Tai, K., Syntactic Error Correction in Programming 
Languages, Ph.D. thesis, Cornell University, January 1977. 

10. Tai, K., “The Tree-to-Tree Correction Problem,” Journal of 
the ACM 26, (3), July 1979, 422-433. 

262 


