
Performing Inferences over Recursive Data Bases

Shamim A. Naqvi

and

Lawrence J. Henschen

Dept. of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201

Abstract

The research reported in this paper presents a
solution to an open problem which arises in sys-
tems that use recursive production rules to re-
present knowledge. The problem can be stated as
follows: "Given a recursive definition, how can
we derive an equivalent non-recursive program
with well-defined termination conditions". Our
solution uses connection graphs to first detect
occurrences of recursive definitions and then
synthesizes a non-recursive program from such a
definition.

I. Introduction

In recent years, attention has focused on adding
inferential capability to Codd's relational
model of data (Codd 1970). This usually takes
the form of defining new relations in terms of
existing relations in the data base. The defined
relations constituting the Intensional Data Base
describe general rules about the data whereas
explicit facts stored in the data base as base
relations comprise the Extensional Data Base.
This paper is concerned with the problem of find-
ing a finite inference mechanism for a defined
relation.

Reiter (1977) suggests that for non-recursive
data bases the essentially logical operations in-
volved in unifying and resolving intensional lit-
erals can be taken care of, i.e. "compiled", be-
fore receiving queries, leaving only those opera-
tions specifically related to information retrie-
val from the extensional data base.

We propose to extend this idea to the general case
by analyzing what resolutions are possible that
can lead to answers for a particular kind of
query. In the case of recursive axioms this in-
volves finding a pattern of data base retrievals
instead of just a single data retrieval as in
Reiter (1977).

II. Problem Representation

We shall view a data base as the ground unit
clauses of a first order theory without function
signs. The words literal and relation will be
used interchangeably and all variables are as-
sumed to be universally quantified.

We propose to solve the problem of recursive def-
initions by using connection graphs like those of
Sickel (1976) in which nodes represent intensional

axioms and edges connect unifiable literals of
opposite signs. A loop is a Potential Recursive
Loop (PRL) if the substitutions around the loop
are such that the two literals at both ends of the
loop are not the same literal and are not in the
same instance of the clause partition. Figure 1
shows an example PRL in which E and F are base
relations and letters at the end of the alphabet
denote variables whereas letters at the start of
the alphabet denote constants.

In this case, starting from A(a,x,z,p) and resolv-
ing around the loop (separating variables as we go)
we eventually come back to clause 1 yielding an
ultimate resolvent -El(x,y) A(a,y,z,b) B(y,y')
lEl(y,y') in which the literal at the end of the
cycle, A(a,y,z,b), is a different literal than the
one we started the loop with. Two features of
this loop traversal are noteworthy. First, the
literal E causes data base accesses which provide
possibly new values for y. Second, these values
of y instantiate x for the next traversal around
the loop and also cause data base accesses for F
which provides answers to the query.

4

Flgure 1. Example PRL

263

III. Derivation of the Iterative Program

Since non-atomic queries can be decomposed into
equivalent atomic queries we shall only consider
atomic queries in this paper. Before describing
our method of deriving an iterative program for a
recursive definition we notice that two kinds of
edges exist in a PRL. A cycle edge contributes
to the PRL whereas an exit edge provides an exit
from the PRL. Extensional literals reached by
traversing exit edges are called Exit Extensional
Literals and those reached by traversing cycle
edges are called Cycle Extensional Literals. For
example in Figure 1 edges 2, 3 and 4 are cycle
edges and edges 5 and 6 are exit edges; 1El(x,y)
is a Cycle Extensional Literal whereas 1E3(u,v)
and 1E4(q,r) are Exit Extensional Literals. We
make the following observations about a PRL.

Observation 1 A PRL must have an exit edge, which
corresponds to the presence of a basis case for a
recursive definition, in order for its clauses to
contribute an answer to a query. In figure l the
basis case is A(a,q,r,b) 1F(q,r). Notice that a
literal having an exit edge has a non-exit edge
which contributes to the cycle.

Observation 2 In Horn data bases, if a PRL exists
for a literal Q, then a literal- must exist which
provides the closing edge for the PRL.

We represent the defined relations as a connection
graph and in a preprocessing step identify all
PRLs. A set of answer expressions corresponding
to a PRL is derived as follows: We note that the
exit edges of Observation 1 above must be connect-
ed to cycle literals. Starting from the intension-
al axiom from which we expect to get a query, we
first delete the literal which would resolve against
the query. We then resolve around the cycle until
we come to an exit edge. At this point the exit
literal represents an expression which can be con-
sidered as a call to a procedure. This procedure
provides one way of obtaining some of the answers.
Paving derived the expression for the first exit
we proceed to successive exits in the same manner.
These expressions are called answer expressions.
In Figure 1 the answer expressions are -tEl(x,y) OR
1E3(y,z) and 1El(x,y) OR -rE4(y,z).

A loop residue is obtained by resolving around the
loop, starting from the intensional axiom from
which we expect to get a query, and traversing
only the cycle edges of the PRL. The ultimate
resolvent is of the form

E:= 1(El(argl,..) & . . . SC Ei(argl,..))

where the Ei (ihO) are base or defined relations.
This expression is called the loop residue. In
Figure 1 the loop residue is 1El(x,y).

In order to derive a program from a PRL we use an
algorithm given in Naqvi (1980). In this section
we shall illustrate the working of this algorithm
by considering two similar definitions of the an-
cestor relation. Consider the first definition
given below and the corresponding connection graph
is shown in Figure 2.

7.

8.

-'ANCESTOR(x,y) lFATHER(y,z) ANCESTOR(x,z)

lMOTHER(u,v) ANCESTOR(u,v)

It is straight-forward to show that with the
+NCESTOR(w,a) we can generate the resolvent

query

9. tiNCESTOR(w,y') lFATHER(y',y")....lFATHER(y,a)

which corresponds to a left recursive definition
of the ancestor relation. In this case the basis
statement is used in the end to get the expression
-+iOTHER(w,y') 1FATHER(y',y")...lFATHER(y,a). The
data retrieval pattern is to find successive
fathers of 'a' and then find a mother. In terms
of the connection graph this corresponds to tra-
versing the loop a certain number of times and
then taking the exit edge. Examining the PRL we
find that z, which is the variable that is expect-
ed to be the driver, is replaced in the loop by y.
Moreover, z determines y through the extensional
evaluation of Father(y,z). This determination
occurs within the loop without recourse to the
basis statement.

Our algorithm does the above kind of analysis and
uses the answer expression derived from the loop
and the substitutions from the closing edge of the
loop to derive a program for the PRL. For this
example it derives the following program fragment:

2: =a
ENQUE(q,z) /* q is a queue */
while (q 1= empty) do

z:= DEQUE(q)
x:= 1(MOTHER(x,y) & FATHER(y,z))
ENQUE (4, Y 1

od

Now, consider the second definition of the ancestor
relation given below and the corresponding connec-
tion graph shown in Figure 3.

11. lFATHER(x,y) -'ANCESTOR(y,z) ANCESTOR(x,z)

12. -+lOTHER(u,v) ANCESTOR(u,v)

Once again, the query -&NCESTOR(w,a) and 11 can
be shown to generate the resolvent

13. 1FATHER(x,y) 1FATHER(y,y)...7ANCESTOR(y",a)

In this case, our first answers come from resolv-
ing (12) and (13) which corresponds in figure 3
to taking the exit edge to the basis case. Sub-
sequent answers are derived by finding the succes-
sive fathers which corresponds to going around
the loop a certain number of times. Examining
the PRL we find that the values of y derive the
next set of answers, x. The expected driver vari-
able z does not participate in this process. Our
algorithm uses the resolvent of the basis case and
the query to start the loop. The substitutions
at the closing edge of the PRL identify the cor-
rect variables which drive the loop and serve as
place holders for answers. The loop residue de-
rives all the subsequent answers. The program
is as shown below.
.- x.-w

t'=lOTHER(w,a)
ENQm (q ,w>
while (q 1 = empty) do

y:= DEQUE(q)
1 FATHER(x,y)
ENQUE (4, x>

od

YlZ

i ANCESTOR(u,v) LMOTHER(J

Figure 2. First Definition of Ancestor Relation

-rFATHER(x,y) -,ANCESTOR(y,z) ANCESTOR(x,z)

(y’u*z’y &?j z)

(w/u,a/v)

Figure 3. Second Definition of Ancestor Relation

To review then, our algorithm analyzes the PRL oE
a recursive definition to determine the loop resi-
due, the answer expressions, the resolvent of the
query and the basis case and whether the defini-
tion is left or right recursive. It then derives
a program whose structure corresponds to one of
the two program structures outlined above.

It now remains to discuss the termination condi-
tions of the derived programs. Our termination
conditions are designed for data bases without
function signs. Briefly, we use a queue to store
all unique values of the variables, indicated by
the loop analysis, during each iteration. Each
new iteration dequeues a previously enqueued value
to generate some possibly new answers. Since the
domain of discourse is finite in the absence of
function signs the number of unique answers in the
data base is finite. Thus the program queue will
ultimately become empty. It should be noted that
our technique for the detection of and generating
programs for recursive definitions works in the
presence of function signs. However, the termina-
tion condition does not guarantee finite computa-
tions in this case.

v. Summary and Conclusions

We have outlined an algorithm which derives itera-
tive programs for recursively defined relations.
The case where a defined relation is mutually
recursive with some other definition (e.g. X & R
-> R and R & Y -b X) leads to the derivation of
mutually recursive programs. Transitive recursive
axioms (e.g. ancestor of an ancestor is an ancestor)
lead to the derivation of recursive programs.
These situations require a fairly complicated con-
trol mechanism for execution time invocation of
the derived programs. This is discussed in detail
in Naqvi (1980) and the algorithJz for deriving the
programs is also given there. We can show the
finiteness and completeness of our method (Naqvi
1980). Although we have considered a first order
theory without function signs the method is ap-
plicable to data bases containing function signs.
The termination condition, however, may not be
rigorous in this case. This is an obvious area
for further research.

References

Chang, C. L., (1979) "On Evaluation of Queries
Containing Derived Relations in a Relational Data
Base", Workshop on Formal Bases for Data Bases,
Toulouse, France.

Codd, E.F., (1970) "A Relational Model of Data
for Large Shared Data Banks", CACM 13, 6, 377-387.

Naqvi, S. (1980) "Deductive Question-Answering in
Recursive Rule-Based Systems", Ph.D. Diss.,
Northwestern University, (in preparation).

Reiter, R., (1977) "An Approach to Deductive
Question Answering", BBN Tech. Report no. 3649.

Sickel, S. (1976) "A Search Technique for Clause
Interconnectivity Graphs", IEEE Trans. on Comput-
ers, Vol. C-25, No. 8.

265

