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Abstract 

The research reported in this paper presents a 
solution to an open problem which arises in sys- 
tems that use recursive production rules to re- 
present knowledge. The problem can be stated as 
follows: "Given a recursive definition, how can 
we derive an equivalent non-recursive program 
with well-defined termination conditions". Our 
solution uses connection graphs to first detect 
occurrences of recursive definitions and then 
synthesizes a non-recursive program from such a 
definition. 

I. Introduction 

In recent years, attention has focused on adding 
inferential capability to Codd's relational 
model of data (Codd 1970). This usually takes 
the form of defining new relations in terms of 
existing relations in the data base. The defined 
relations constituting the Intensional Data Base 
describe general rules about the data whereas 
explicit facts stored in the data base as base 
relations comprise the Extensional Data Base. 
This paper is concerned with the problem of find- 
ing a finite inference mechanism for a defined 
relation. 

Reiter (1977) suggests that for non-recursive 
data bases the essentially logical operations in- 
volved in unifying and resolving intensional lit- 
erals can be taken care of, i.e. "compiled", be- 
fore receiving queries, leaving only those opera- 
tions specifically related to information retrie- 
val from the extensional data base. 

We propose to extend this idea to the general case 
by analyzing what resolutions are possible that 
can lead to answers for a particular kind of 
query. In the case of recursive axioms this in- 
volves finding a pattern of data base retrievals 
instead of just a single data retrieval as in 
Reiter (1977). 

II. Problem Representation 

We shall view a data base as the ground unit 
clauses of a first order theory without function 
signs. The words literal and relation will be 
used interchangeably and all variables are as- 
sumed to be universally quantified. 

We propose to solve the problem of recursive def- 
initions by using connection graphs like those of 
Sickel (1976) in which nodes represent intensional 

axioms and edges connect unifiable literals of 
opposite signs. A loop is a Potential Recursive 
Loop (PRL) if the substitutions around the loop 
are such that the two literals at both ends of the 
loop are not the same literal and are not in the 
same instance of the clause partition. Figure 1 
shows an example PRL in which E and F are base 
relations and letters at the end of the alphabet 
denote variables whereas letters at the start of 
the alphabet denote constants. 

In this case, starting from A(a,x,z,p) and resolv- 
ing around the loop (separating variables as we go) 
we eventually come back to clause 1 yielding an 
ultimate resolvent -El(x,y) A(a,y,z,b) B(y,y') 
lEl(y,y') in which the literal at the end of the 
cycle, A(a,y,z,b), is a different literal than the 
one we started the loop with. Two features of 
this loop traversal are noteworthy. First, the 
literal E causes data base accesses which provide 
possibly new values for y. Second, these values 
of y instantiate x for the next traversal around 
the loop and also cause data base accesses for F 
which provides answers to the query. 
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Flgure 1. Example PRL 
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III. Derivation of the Iterative Program 

Since non-atomic queries can be decomposed into 
equivalent atomic queries we shall only consider 
atomic queries in this paper. Before describing 
our method of deriving an iterative program for a 
recursive definition we notice that two kinds of 
edges exist in a PRL. A cycle edge contributes 
to the PRL whereas an exit edge provides an exit 
from the PRL. Extensional literals reached by 
traversing exit edges are called Exit Extensional 
Literals and those reached by traversing cycle 
edges are called Cycle Extensional Literals. For 
example in Figure 1 edges 2, 3 and 4 are cycle 
edges and edges 5 and 6 are exit edges; 1El(x,y) 
is a Cycle Extensional Literal whereas 1E3(u,v) 
and 1E4(q,r) are Exit Extensional Literals. We 
make the following observations about a PRL. 

Observation 1 A PRL must have an exit edge, which 
corresponds to the presence of a basis case for a 
recursive definition, in order for its clauses to 
contribute an answer to a query. In figure l the 
basis case is A(a,q,r,b) 1F(q,r). Notice that a 
literal having an exit edge has a non-exit edge 
which contributes to the cycle. 

Observation 2 In Horn data bases, if a PRL exists 
for a literal Q, then a literal- must exist which 
provides the closing edge for the PRL. 

We represent the defined relations as a connection 
graph and in a preprocessing step identify all 
PRLs. A set of answer expressions corresponding 
to a PRL is derived as follows: We note that the 
exit edges of Observation 1 above must be connect- 
ed to cycle literals. Starting from the intension- 
al axiom from which we expect to get a query, we 
first delete the literal which would resolve against 
the query. We then resolve around the cycle until 
we come to an exit edge. At this point the exit 
literal represents an expression which can be con- 
sidered as a call to a procedure. This procedure 
provides one way of obtaining some of the answers. 
Paving derived the expression for the first exit 
we proceed to successive exits in the same manner. 
These expressions are called answer expressions. 
In Figure 1 the answer expressions are -tEl(x,y) OR 
1E3(y,z) and 1El(x,y) OR -rE4(y,z). 

A loop residue is obtained by resolving around the 
loop, starting from the intensional axiom from 
which we expect to get a query, and traversing 
only the cycle edges of the PRL. The ultimate 
resolvent is of the form 

E:= 1(El(argl,..) & . . . SC Ei(argl,..)) 

where the Ei (ihO) are base or defined relations. 
This expression is called the loop residue. In 
Figure 1 the loop residue is 1El(x,y). 

In order to derive a program from a PRL we use an 
algorithm given in Naqvi (1980). In this section 
we shall illustrate the working of this algorithm 
by considering two similar definitions of the an- 
cestor relation. Consider the first definition 
given below and the corresponding connection graph 
is shown in Figure 2. 
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-'ANCESTOR(x,y) lFATHER(y,z) ANCESTOR(x,z) 

lMOTHER(u,v) ANCESTOR(u,v) 

It is straight-forward to show that with the 
+NCESTOR(w,a) we can generate the resolvent 

query 

9. tiNCESTOR(w,y') lFATHER(y',y")....lFATHER(y,a) 

which corresponds to a left recursive definition 
of the ancestor relation. In this case the basis 
statement is used in the end to get the expression 
-+iOTHER(w,y') 1FATHER(y',y")...lFATHER(y,a). The 
data retrieval pattern is to find successive 
fathers of 'a' and then find a mother. In terms 
of the connection graph this corresponds to tra- 
versing the loop a certain number of times and 
then taking the exit edge. Examining the PRL we 
find that z, which is the variable that is expect- 
ed to be the driver, is replaced in the loop by y. 
Moreover, z determines y through the extensional 
evaluation of Father(y,z). This determination 
occurs within the loop without recourse to the 
basis statement. 

Our algorithm does the above kind of analysis and 
uses the answer expression derived from the loop 
and the substitutions from the closing edge of the 
loop to derive a program for the PRL. For this 
example it derives the following program fragment: 

2: =a 
ENQUE(q,z) /* q is a queue */ 
while (q 1= empty) do 

z:= DEQUE(q) 
x:= 1(MOTHER(x,y) & FATHER(y,z)) 
ENQUE (4, Y 1 

od 

Now, consider the second definition of the ancestor 
relation given below and the corresponding connec- 
tion graph shown in Figure 3. 

11. lFATHER(x,y) -'ANCESTOR(y,z) ANCESTOR(x,z) 

12. -+lOTHER(u,v) ANCESTOR(u,v) 

Once again, the query -&NCESTOR(w,a) and 11 can 
be shown to generate the resolvent 

13. 1FATHER(x,y) 1FATHER(y,y)...7ANCESTOR(y",a) 

In this case, our first answers come from resolv- 
ing (12) and (13) which corresponds in figure 3 
to taking the exit edge to the basis case. Sub- 
sequent answers are derived by finding the succes- 
sive fathers which corresponds to going around 
the loop a certain number of times. Examining 
the PRL we find that the values of y derive the 
next set of answers, x. The expected driver vari- 
able z does not participate in this process. Our 
algorithm uses the resolvent of the basis case and 
the query to start the loop. The substitutions 
at the closing edge of the PRL identify the cor- 
rect variables which drive the loop and serve as 
place holders for answers. The loop residue de- 
rives all the subsequent answers. The program 
is as shown below. 
.- x.-w 

t'=lOTHER(w,a) 
ENQm (q ,w> 
while (q 1 = empty) do 



y:= DEQUE(q) 
1 FATHER(x,y) 
ENQUE (4, x> 

od 

YlZ 

i ANCESTOR(u,v) LMOTHER(J 

Figure 2. First Definition of Ancestor Relation 

-rFATHER(x,y) -,ANCESTOR(y,z) ANCESTOR(x,z) 

(y’u*z’y &?j z) 

(w/u,a/v) 

Figure 3. Second Definition of Ancestor Relation 

To review then, our algorithm analyzes the PRL oE 
a recursive definition to determine the loop resi- 
due, the answer expressions, the resolvent of the 
query and the basis case and whether the defini- 
tion is left or right recursive. It then derives 
a program whose structure corresponds to one of 
the two program structures outlined above. 

It now remains to discuss the termination condi- 
tions of the derived programs. Our termination 
conditions are designed for data bases without 
function signs. Briefly, we use a queue to store 
all unique values of the variables, indicated by 
the loop analysis, during each iteration. Each 
new iteration dequeues a previously enqueued value 
to generate some possibly new answers. Since the 
domain of discourse is finite in the absence of 
function signs the number of unique answers in the 
data base is finite. Thus the program queue will 
ultimately become empty. It should be noted that 
our technique for the detection of and generating 
programs for recursive definitions works in the 
presence of function signs. However, the termina- 
tion condition does not guarantee finite computa- 
tions in this case. 

v. Summary and Conclusions 

We have outlined an algorithm which derives itera- 
tive programs for recursively defined relations. 
The case where a defined relation is mutually 
recursive with some other definition (e.g. X & R 
-> R and R & Y -b X) leads to the derivation of 
mutually recursive programs. Transitive recursive 
axioms (e.g. ancestor of an ancestor is an ancestor) 
lead to the derivation of recursive programs. 
These situations require a fairly complicated con- 
trol mechanism for execution time invocation of 
the derived programs. This is discussed in detail 
in Naqvi (1980) and the algorithJz for deriving the 
programs is also given there. We can show the 
finiteness and completeness of our method (Naqvi 
1980). Although we have considered a first order 
theory without function signs the method is ap- 
plicable to data bases containing function signs. 
The termination condition, however, may not be 
rigorous in this case. This is an obvious area 
for further research. 
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