
RI: an Expert in the Computer Systems Domain’ 

John McDermott 

Department of Computer Science 

Carnegie-Mellon University 

Pittsburgh, Pennsylvania 15213 

INTRODUCTION. Rl* is a rule-based system that has much in 
common with other domain-specific systems that have been 
developed over the past several years [l, 81. It differs from these 
systeins primarily in its use of Match rather than 

Generate-and-Test as its central problem solving method [2]; 
rather than exploring several hypotheses until an acceptable one 
is found, it exploits its knowledge of its task domain to generate a 
single acceptable solution. Rl’s domain of expertise is 
configuring Digital Equipment Corporation’s VAX-l l/780 systems. 
Its input is a customer’s order and its output is a set of diagrams 
displaying the spatial relationships among the components on the 
order; these diagrams are used by the technician who physically 
assembles the system. Since an order frequently lacks one or 
more components required for system functionality, a major part 
of Rl’s task is to notice what components are missing and add 
them to the order. Rl is currently being used on a regular basis by 
DEC’s manufacturing organization.3 

THE DOMAIN. The VAX-11/780 is the first implementation of 
DEC’s VAX-1 1 architecture. The VAX-1 l/780 uses a high speed 
synchronous bus, the sbi, as its primary interconnect; the central 
processor, one or two memory control units, up to four massbus 
interfaces, and up to four unibus interfaces can be connected to 
the sbi. The massbuses and particularly the unibuses can support 
a wide variety of peripheral devices. A typical system contains 
about 90 components; these include cabinets, periperal devices, 
drivers for the devices, and cables. There are a large number of 
rules that constrain the ways in which these components may be 
associated. 

RI’S DEFINING CHARACTEKISTICS. Rl is implemented in 
OPS4, a production system language developed at 
Carnegie-Mellon University [3, 71. An OPS4 production system 

‘This paper describes Rl as it exists in June of 1980; it is a highly 
condensed version of [5]. 

2 
Four years ago I couldn’t even say *‘knowledge engineer”, now I . . . 

3The development of Ri was supported by Digital Equipment 
Corporation. The research that led to the development of OPS4, the 

language in which Rl is written, was sponsored by the Defense Advanced 
Research Projects Agency. (DOD), ARPA Order No. 3597, and monitored 
by the Air Force Avionics Laboratory under Contract F33615-78-C-1151. 

The views and conclusions contained in this document are those of the 
author and should not be interpreted as representing the official policies, 
either expressed or implied, of Digital Equipment Corporation, the 

Defense Advanced Research Projects Agency, or the U.S. Government. 
VAX, PDP-11, UNIBUS, and MASSBUS are trademarks of Digital 

Equipment Corporation. 

consists of a set of productions held in production memory and a 
set of data elements (eg, state descriptions) held in working 

memory. A production is a rule composed of conditions and 
actions: 

Pi (Cl C2 . . . Cn --> A, A2 . . . Am) 

Conditions are forms that are instantiated by memory elements. 
Actions add elements to working memory or modify existing 
elements. The recognize-act cycle repeatedly finds all production 
instantiations and executes one of them.4 Rl exploits this 
recognition match. Its rules have conditions that recognize 
situations in which a particular type of extension to a particular 
type of partial configuration is permissable or required; the actions 
then effect that extension. 

OPS4’s two memories have been augmented,. for this 
application, with a third. This memory, the data base, contains 
descriptions of each of the 420 components currently supported 
for the VAX. Each data base entry consists of the name of a 
component and a set of eight or so attribute/value pairs that 
indicate the properties of the component that are relevant for the 
configuration task. As Rl begins to configure an order, it retrieves 
the relevant component descriptions. As the configuration is 
generated, working memory grows to contain descriptions of 
partial configurations, results of various computations, and 
context symbols that identify the current subtask.’ 

Production memory contains all of Rl’s permanent knowledge 
about how to configure VAX systems. Rl currently has 772 rules 
that enable it to perform the task.5 These rules can be viewed as 
state transition operators. The conditional part of each rule 
describes features that a state must possess in order for the rule to 
be applied. The action part of the rule indicates what features of 
that state have to be modified or what features have to be added in 
order for a new state that is on a solution path to be generated. 
Each rule is a more or less autonomous piece of knowledge that 
watches for a state that it recognizes to be generated. Whenever 

40PS4’s cycle time, though it is essentially independent of the size of 
both production memory and working memory [4], depends on particular 
features of the production system (eg, the number and complexity of the 
conditions and actions in each production); the average cycle time for 
OPS4 interpreting Rl is about 150 milliseconds. CPS4 is implemented in 
MACLISP; Rl is run on a PDP- 10 (model KL) and loads in 4 12 pages Of 
core. 

5 Only 480 of these ru!es are “configuration rules”; the remainder 

contain more general (non domain-specific) knowledge that Rl needs in 
order to use the configuration rules. 

269 



that happens, it can effect a state transition. If all goes well, this 
new state will, in turn, be recognized by one or more rules; one of 
these rules will effect another state transition, and so on until the 
system is configured. English translations of two sample rules are 
shown in Figure 1. 

ASSlGN-UB-MODULES-EXCEPT-THOSE-CONNECTlNG-TO-PANELS-4 

IF: THE CURRENT CONTEXT IS ASSIGNING DEVICES 
TO UNIBUS MODULES 

AND THERE IS AN UNASSIGNED DUAL PORT DISK DRIVE 
AND THE TY PE OF CONTROLLER IT REQUIRES IS KNOWN 
AND THERE ARE TWO SUCH CONTROLLERS NEITHER 

OF WHICH HAS ANY DEVICES ASSIGNED TO IT 
AND THE NUMBER OF DEVICES THAT THESE 

CONTROLLERS CAN SUPPORT IS KNOWN 

THEN: ASSIGN THE DISK DRIVE TO EACH OF THE CONTROLLERS 
AND NOTE THAT THE TWO CONTROLLERS HAVE BEEN 

ASSOCIATED AND THAT EACH SUPPORTS ONE DEVICE 

degree of conditionality in the configuration task. The fan-in of a 
rule is the number of distinct rules that could fire immediately 
before that rule; the fan-out is the number of distinct rules that 
could fire immediately after the rule. The average fan-in and 
fan-out of Rl’s rules is 3. The graph of possible rule firing 
sequences, then, has 666 nodes, one for each of the rules 
(excluding the 106 output generation rules); each of these nodes 
has, on the average, three edges coming into it and three going 
out. It should be clear that unless the selection of which edge to 
follow can be highly constrained, the cost (in nodes visited) of 
finding an adequate configuration (an appropriate path through 
the rules) will be enormous. It is in this context that the power of 
the Match method used by Rl becomes apparent. When Rl can 
configure a system without backtracking, it finds a single path that 
consists, on the average, of about 800 nodes. When Rl must 
backtrack, it visits an additional N nodes, where N is the product of 
the number of unsuccessful unibus module sequences it tries 

PUT-UB-MODULE-6 

IF: THE CURRENT CONTEXT IS PUTTING UNIBUS MODULES 
IN BACKPLANES IN SOME 80X 

AND IT HAS BEEN DETERMINED WHICH MODULE TO TRY 
TO PUT IN A BACKPLANE 

AND THAT MODULE IS A MULTIPLEXER TERMINAL INTERFACE 
AND IT HAS NOT BEEN ASSOCIATED WITH ANY PANEL SPACE 
AND THE TY PE AND NUMBER OF BACKPLANE SLOTS 

IT REQUIRES IS KNOWN 
AND THERE ARE AT LEASTTHAT MANY SLOTS AVAILABLE 

IN A BACKPLANE OFTHE APPROPRIATETYPE 
AND THE CURRENT UNIBUS LOAD’ON THAT BACKPLANE 

IS KNOWN 
AND THE POSITION OFTHE BACKPLANE IN THE BOX IS KNOWN 

THEN: ENTER THE CONTEXT OF VERIFYING PANEL SPACE 
FOR A MULTIPLEXER 

Figure 1: Two Sample Rules 

(which is rarely more than 2) and the number of nodes that must 
be expanded to generate a candidate unibus module 
configuration (which is rarely more than 300). 

Rl ‘S EVOLUTION. In a period of less than a year, Rl went from 
an idea, to a demonstration system that had most of the basic 
knowledge required in the domain but lacked the ability to deal 
with complex orders, to a system that possesses true expertise. Its 
development parallels, in many respects, the development of the 
several domain-specific systems engineered by Stanford 
University’s Heuristic Programming Project [2]. Rl’s 
implementation history divides quite naturally into two stages. 
During the first stage, which began in December of 1978 and 
lasted for about four months, I spent five or six days being tutored 
in the basics of VAX system configuration, read and reread the two 
manuals that describe many of the VAX configuration constraints, 

It is usual to distinguish the matching of forms and data from 
search: for example, in discussing the amount of search occurring 
in a resolution theorem prover, the unification of clauses is 
considered to be part of the elementary search step. But Match is 
also a method for doing search in a state space [6]; it is analogous 
to methods such as Hill Climbing or Means-ends Analysis, though 
much more powerful. The characteristic that distinguishes Match 
from other Heuristic Search methods is that in the case of Match 
the conditions (tests) associated with each state are sufficient to 
guarantee that if a state transition is permissible, then the new 
state will be on a solution path (if there is a solution path). Thus 
with Match, false paths are never generated, and so backtracking 
is never required. Match is well suited for the configuration task 
because, with a single exception, the knowledge that is available 
at each step is sufficient to distinguish between acceptable and 
unacceptable paths. The subtask that cannot always be done with 
Match alone is placing modules on the unibus in an acceptable 
sequence; to perform this subtask, Rl must occassionally 
generate several candidate sequences. 

and implemented an initial version of Rl (consisting of fewer than 
200 domain rules) that could configure the simplest of orders 
correctly, but made numerous mistakes when it tried to tackle 
more complex orders.” The second stage, which lasted for 
another four months, was spent in asking people who were expert 
in the VAX configuration task to examine Rl’s output, point out 
Rl’s mistakes, and indicate what knowledge Rl was lacking. RI 
was sufficiently ignorant that finding mistakes was no problem. 
Given a criticism of some aspect of the configuration by an expert, 
all that was necessary in order to refine Rl’s knowledge was to 
find the offending rule, ask the expert to point out the problem with 
the condition elements in the rule, and then either modify the rule 
or split it into two rules that would discriminate between two 
previously undifferentiated states. During this stage, Rl’s domain 
knowledge almost tripled. 

VALIDATION. During October and November of 1979, Rl was 
involved in a formal validation procedure. Over the two month 
period, Rl was given 50 orders to configure. A team of six experts 

The fan-in and fan-out of Rl’s rules provide a measure of the ‘During this first stage, Rl’s name was XCON. 

270 



examined RI’s output, spending from one to two hours on each REFERENCES 

order. In the course of examining the configurations, 12 pieces of 
errorful knowledge were uncovered. The rules responsible for the 
errors were modified and the orders were resubmitted to RI and 
were all configured correctly. Each of these 50 orders contained, 

‘. Amarel, S. et al. Reports of panel on applications of artificial 
intelligence. Proceedings of the Fifth International Joint 
Conference on Artificial Intelligence, MIT, 1977, pp. 994-1006. 

on the average, 90 components; RI fired an average of 1056 rules 2. 
and used an average of 2.5 minutes of cpu time in configuring 

Feigenbaum, E. A. The art of artificial intelligence. 
Proceedings of the Fifth International Joint Conference on 

each order. Since January of 1980, RI has configured over 500 
orders. It is now integrated into DEC’s manufacturing 
organization. It has also begun to be used by DEC’s sales 
organization to configure orders on the day they are booked. 

Artificial Intelligence, MIT, 1977, pp. 1014-1029. 

to enlarge its domain so that it can become a more helpful system. 

CONCLUDING REMARKS. RI has proven itself to be a highly 
competent configurer of VAX-l l/780 systems. The configurations 
that it produces are consistently adequate, and the information 

Work has already begun on augmenting RI’s knowledge to enable 

that it makes available to the technicians who physically assemble 
systems is far more detailed than that produced by the humans 
who do the task. There are, however, some obvious ways in which 

3. Forgy, C. L. and J. McDermott. OPS, A domain-independent 
production system language. Proceedings of the Fifth 
International Joint Conference on Artificial Intelligence, MIT, 1977, 
pp. 933-939. 

4. Forgy, C. L. RETE: A fast algorithm for the many 
pattern/many object pattern match problem. Carnegie-Mellon 
University, Department of Computer Science, I 980. 

5. 
systems. Carnegie-Mellon University, Department of Computer 

McDermott, J. RI : a rule-based configurer of computer 

Science, 1980. 

it to configure other computer systems manufactured by DEC. In 

those capabilities. Ultimately we hope to develop a salesperson’s 

addition, we plan to augment its knowledge so that it will be able to 

assistant, an Rl that can held a customer identify the system that 

help with the scheduling of system delivery dates. We al,so plan to 
augment RI’s knowledge so that it will be able to provide 

best suits his needs. 

interactive assistance to a customer or salesperson that will allow 
him, if he wishes, to specify some of the capabilities of the system 
he wants and let RI select the set of components that will provide 

6. Newell, A. Heuristic programming: ill-structured problems. 
ln Progress in Operations Research, Aronofsky, J. S.,’ Ed.,John 
Wiley and Sons, 1969, pp. 361-414. 

7. Newell, A. Knowledge representation aspects of production 
systems. Proceedings of the Fifth International Joint Confeience 
on Artificial Intelligence, MIT, 1977, pp. 987-988. 

8. Waterman, D. A. and F. Hayes-Roth. Pattern-Directed 
Inference Systems. Academic Press, 1978. 

ACKNOWLEDGEMENTS. Many people have provided help in 
various forms. Jon Bentley, Scott Fahlman, Charles Forgy, Betsy 
Herk, Jill Larkin, Allen Newell, Paul Rosenbloom, and Mike 
Rychener gave me much encouragement and many valuable 
ideas. Dave Barstow, Bruce Buchanan, Bob Englemore, Penny 
Nii, Ted Shortliffe, and Mark Stefik contributed their knowledge 
engineering expertise. Finally, Jim Baratz, Alan Belancik, Dick 
Caruso, Sam Fuller, Linda Marshall, Kent McNaughton, Vaidis 
Mongirdas, Dennis O’Connor, and Mike Powell, all of whom are at 
DEG, assisted in bringing RI up to industry standards. 

271 


