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A rcprcscntntion of smooth pldnc curves for recognition is proposed. 
The basic rcprcscntation IS a linked list of four primitive shapes, called 

“codons”, which arc invariant under rot&ltions. translations and unifonn 
scaling. Psychophysical observations regarding the pcrccption of figure- 
ground reversals are prcscntcd to suggest that a similar representation 

could bc used by the human visual system. 

I lN’I’ROI~UCTlON 

A vision system somctimcs must compute its initial descriptions of a 

shape without bcnclit of context. Yet these descriptions should highly 

constrain the set of posslblc matches with memory if they arc to be 

useful for recognition. For cxaniplc. though one cannot rcasonnbly 
predict the contents of figure 1 prior to seeing it, the shapes arc readily 
rccogniLcd. This simple demonstration implies the cxistcncc of context- 
indcpcndcnt rules tllat provide shape descriptions which can bc used to 
initi‘itc the recognition process. Such rules for smooth plant curves are 
the subject here. 

To be useful for triggering the recognition process the initial rules 
should be computable on images, should 1 icld descriptions which are 
invariant under translations, rotations** and uniform scaling and should 

provide a first index into a table of shap’cs in memory. Although a 
plane curve r(s) = (z(s), y(s)) can bc specified in many diffcrcnt ways, 
a description based upon its curvature K(S) is attractive. Such a rcpre- 
scntation satisfies two of the invariance conditions, namely translation 

and rotation indcpendencc [2]. For any rotation 0 and translation (u, v), 
r(s) is uniquely given by 

-i(s) = (J cos~(s)ds + u, 
J 

sin $(s)ds + 21 
> 

, 

where 

+(s) = Jws + 0 
However, because curvature is scale dependent. a means for repre- 

senting K(S) in a scale invariant manner still must be sought. In ad- 

dition the representation itself should not be a continuous function if 

it is to ‘serve as an index into memory. Kather, the representation 
should provide aI1 articulation ofn(a) into units which can bc described 

qualit;lti\cly. A r~ason~~l~lc approach is to exploit singular points of 
orders 1 and 0, i.e. maxiina, miIlilni1 and Lcrocs of curvature [3. 41, 

since the property of being a singular point iE in\,arinnt under rotations, 

translations and uniform scaling. 

Figure 1. Some shapes rccogniLable without benctit of context, 
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**More prcciscly, the cnrly descriptions should dccouplc the position, 
rotation and ovcrnll scaling of a shape from the shape itself. ‘l‘his allows 

the position, rotation, scaling and shape to bc made explicit scparatcly, 

and allows their cffccts on the recognition process to bc discntanglcd. 
Thus the goal of rotational invariance for shape descriptions, for ex- 

ample, in no way implies that the rotation of a shape CilIlllOt affect its 
intcrprctation [l]. 

II MAXIM 2 MINIM/~ ANI) CUKVI-‘“OI~II~N’I’A’I‘ION” AL. ---L - .-- ~_ --L ---1-- -.-- __ 

Which points arc maxilna or minima of curvature dcpcnds on the 

orientation of tllc CuI’vC. ‘l’hough in gcncral cur\ aturc ic an unsigned 

quantity, in the cast of plant cur\cs it is J>ossiblc to aG?n a sign to 
the curvature con+stcntly once one of the t\j’n possible orientations for 

the curve is chosc11. The oric‘ntation is usually spcclficd in figure\ by 

an arrow on thc~ curve pointin, n in the direction in which the curl c is 
to bc tra\,crscd. Ijy a cl~mgc in orientation of 3 J~~IIC curve the sign of 
tbc curvature chnngcs cvc~~y~sl~rc a1011g the cur\c. In J)articuJar maxima 

bcco~nc minima and vice-versa. ‘1‘1~ con\ cntion adopted hcrc is that 
figure is to the left and ground to the right as the curve is travcrscd in 
an oricntiltion. ‘I’hus knowing which side is figure dctcnnincs the choice 
of orientation on a curve or, convcrscly. choosing an orientation dctcr- 
mints which side is figure by con\cntion. Minima in-c rhcn typically 
associated uith concavities of the figure, maxi1n.r with convcxitics (SW 
figure 2). It is J,ossiblc howcvcr for minima to have positive curvature, 
as in tlic case of co~lvcx closed curves, or maxima to have ncgativc cur- 

vature. as ~11~11 the oricntrltion of the convex closed curve is rcvcrsed. 
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31 2: 
Figure 2. Minima of curvature (indicated by slashes). Arrows indicate curve 
orientation. 

III SEGMENTATION 

Maxima, minima and zeroes of curvature arc all candidate points for 
partitioning a curve into kinits in a manner invariant under rotations, 

translations and uniform scaling. To choose among them WC require 

that the units should reflect natural parts of shapes [5, 61. Fortunntcly, 
when 3-I) p;rrts arc joined to crcatc complex objects concakitics will 
generally bc crcatcd in the silhoucttc. Scgmcntation of the image at 

concavities thcrcforc immcdiatcly cncodcs in a straightforward manner 
an important PJO~CJ~Y of tl!c natural world that is not captured by max- 

imas or 7crocs of curvature. This is our ge1fe177Zpusiliu~~ argument for 
segmentation at minima of curvature.* 

Figure 3. Joming parts generally produces concavitlcs in the resulting silhouette. 

1V Dt’SCl~IPTION OF PAl~l’S~ CONTOUR CODONS ---A 

Minima of curvature arc used to break a curve into scgmcnts, 

whcrcas maxima and zcrocs arc used to describe the shape of each scg- 

mcnt. There arc four basic types of scgn~cnts. which WC call “contour 

codons”. I’urthcrmorc, only certain codon joins (pairwisc connections) 
arc allowable. 

First, all curve segments contain 7~~0, one or two points of zero cur- 

vaturc. (This assumes that when K(.s) = 0, K’(S) # 0). Scgmcnts 
with no %CJOCS arc called type 0 codons, those with two zcrocs arc called 

type 2 codons. If a scgnlent has cxactty one ZCJO, the zero may be 
cncountcrcd either before (type l-) or nfter (type l+) the maximum 
point of the scgmcnt when traversing the curve in the chosen orienta- 
tion. Thus thcrc arc four basic codon Lypcs (figure 4). 
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Figure 4. Contour codons (as dcfincd in section 
indlcatcd by do& on the curves, minima ‘by slashes. 

4). Zcrocs of curvak~re are 

If desired, codons can bc further described by noting the positions 
of the maximum and any ZCJOCS of curvature within the scgmcnt, nor- 
malizcd by lhc total arc length of the scgmcnt. This should be done 
qualitatively at first and then more quanGtativcly as is ncccssary. For 
example, label the first minimum encountcrcd in traversing a segment 
the “tail” of the scgmcn!. and the other minimum label the “head”. 

Then the position of the maximum can bc given crudely as much closer 

to the head, much closer to the tail, or approximately in the middle. 
This gives the “skew” of the curve. Zeroes can similarly bc described as 
closer to the maximum point, closer to the head/tail, or approximately 
in the middle bctwccn the maximum and the head or tail. 

Figure 5. Cune segments with identical smgularities but different shapes. 

As shown in figure 5. two segments can have identically placed max- 

ima and zeroes, identical curvatures at the maxima and minima, and yet 
appear quite different. The difference is the behavior of the curvature 

bctwccn the singular points. This behavior can be dcscribcd in an ap- 

propriately invariant manner by the integral of curvature between each 

of the singular points: 

I 

b 

n(s)ds = B(b) - B(a), 
a 

where B(s) is the angle of the tangent at r(s) given by B(s) = 
tan-‘(y’(s)/z’(s)). A p re rcscntation which notes the integral of cur- 

vature between the singular points will give different descriptions for 

curves A and B in figure 5. 

There are restrictions on how codons may be joined at minima. 

Define a codutl @in by the operation a o b, a, b E (0, l-, l+, 2) 
indicating that the head of a is smoothly connected to the tail of b. Note 

that in general a o b # b o a and hence the codon sequence is critical. 

Not all c’onccivable codon joins are possible (figure 6). 

The fact that not all conccivablc-codon joins iiJC allowable suggests 

that the codon rcprcsentation may bc amenable to error correction tech- 
niques. Consider, for example, the codon string . . . cj-1 cj c3+1 . . . . If 
all codon joins wcrc allowable then cj could take any one of the four 

values (0 l+ l- 2) rcgardlcss of the values of ~~-1 and cJ+l. Thus 
the value of Cj would be indepcndcnt of its context. Using figure 6, 

however, one can show that in actuality the context of a codon restricts 
its range of possible values to two on average. One can also show that in 
one third of the contexts cI is actually uniquely determined. 

*When gcncral position is violated special rules may bc nccdcd to 

parlition and dcscribc the resulting image contour [S].. This will not be 

considered here. 
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F iigure 6. Table of allowable codon joins Rows and columns are labclled by 
odon type, with the intended codon join scqucncc at cxh table entry being (row 
ype, column type). Legal joms are indicated by a +, others by a -. 

V RF,1 .A’TION TO PEKCI:PI’ION 

The rcprcscntation of plane curves for recognition proposed hcrc can 
explain the well known observation that a curve can look very diffcrcnt 
dcpcnding on which side is perccivcd as figure and which as ground 
[7]. (SW figure 7a). ‘l’hc explanation is that a curve looks diffcrcnt 

because its rcprcscntations under the two possible orientations arc com- 
plctcly difTcrcnt. Since the positions of the minima of curvature arc 
not invariant under a change in oricnt;ltion (direction of traversal) of a 
curve, the PJI ts of a curve as spccificd in its rcprescntation can bc quite 

different for the two orientations. (SW figure 7b). If one chnsc to define 

parts by zcrocs of curvature [8], or by minima nrzd maxima [3, 4, lo], the 
parts would not differ under a change in orientation of a curve. 

----------e--m 

I 0 

m---e---- 

b 1’ 1+ 1’ 1+ 

codon shng : 
1+21-1+01- 

codon string : 
01-1+022 
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Figure 7. (a) Figure-ground reversal makes bounding curve appear different. (b) 
Diffcrcnt codon string descriptions are assigned to a curve in its two orientations. 

The perceptual significance of minima can also be demonstrated by 
a simple modification of Rubin’s ambiguous face-goblet illusion [9]. If 

the locations of minima are indicated by occlusions, then the perception 
of the curve is biased toward one of its two orientations and either the 

face or goblet impression becomes more apparent (figure 8). However, 

when this figure is viewed at a distance so the added lines are not visible, 

then the classical instability returns. Neither highlighting the zeroes 

nor highlighting the maxima has comparable effect because they do not 

correspdnd to natural points for segmentation. 

Figure 8. Rubin’s face-goblet illusion segmented at minima to reduce the in- 
stability. 

VI LOCK-KEY AN11 MIRROR IUWERSAI, TRANSFORMS 

‘l’hc codon rcprcscntation is designed to decouple the shape of a con- 
tour from its disposition in space and its overall size. Conscqucntly the 
shape description is invariant under rotation, translation and uniform 

scaling of the contour. llowcvcr, as dctnonstratcd in figure 7b, the shape 

of a contour is not invari,lnt when the direction of traversal along the 
contour is rcvcrscd. It is not difficult to convince oncsclf also that the 
shape description is not invariant under a mirror reversal of the contour. 

The question naturally arises, Arc thcrc simple rules that define how the 
codon string of a contour is transformed when the contour undergoes a 
mirror rcvcrsal or a reversal in direction of traversal (change in oricnta- 

tion)i 

In the case of a mirror rcvcrsal the rule is quite simple. The mirror 

transform of a codon string is obtained by rcvcrsing the direction in 
which the string is read (right to left rather than left to right) and revers- 
ing the sign attached to each type 1 codon. Thus the mirror transform 
of < I+ 2 l- l+ 0 l- > is < l+ 0 l- 1+ 2 l- >. This rule 
can also bc used to find symmctrics within a single contour. If, for 
cxamplc, one half of a codon string is found to bc the mirror transform 
of the rcmaindcr of the string, a necessary condition for the curve to be 
symmetric has been found. Note that this applies to skew symmetry as 

long as zeroes of curvature arc not made to appear or disappear by the 

skew. 

When the sense of traversal of a curve is reversed the codon 

string transformation rule, called the lock-key transform, is unique 
but apparently not simple. It is perhaps most easily specified 
as a map from pairs of concatenated codons to codon singletons. 
The codon doublets which map to each codon singleton are 
((00, 01+, l-0, l-l+) t--+ O}, {(Ol-, 02) H l-}, {(lt-0, 20) i--r 
If} and {(l+l-, 1+2, 21-, 22) H 2}. This lock-key mapping can: 

be used, for example, to transform each of the codon strings of figure 7b. 

into the other. 
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VII SUMMARY 

An approach to the representation of plane curves for recognition has 

been sketched. It is suggested that minima of curvature can be used 
to break a curve into parts, and that maxima and zeroes can be used 

to describe the parts. This approach explains why a curve can appear 

quite different when figure and ground are reversed. Extensions of 

the approach to piecewise-smooth curves are presented in Hoffman and 

Richards [ll]. Extensions to surfaces are desirable. 
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