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ABSTRACT

A representation of smooth plane curves for recognition is proposed.
The basic representation is a linked list of four primitive shapes, called
“codons”, which are invariant under rotations. translations and uniform
scaling. Psychophysical observations regarding the perception of figure-
greund reversals are presented to suggest that a similar representation
could be used by the human visual system.

I INTRODUCTION

A vision system somctimes must compute its initial descriptions of a
shape without benefit of context. Yet these descriptions should highly
constrain the set of possible matches with memory if they are to be
uscful for recognition.  For example, though one cannot reasonably
predict the contents of figure 1 prior to sceing it, the shapes are readily
recognized. This simple demonstration implies the existence of context-
independent rules that provide shape descriptions which can be used to
initiate the recognition process. Such rules for smooth plane curves are
the subject here.

Figure 1. Some shapes recopnizable without benefit of context.
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**More precisely, the early descriptions should decouple the position,
rotation and overall scaling of a shape from the shape itsclf. ‘This allows
the position, rotation, scaling and shape to be made explicit separately,
and allows their effects on the recognition process to be disentangled.
Thus the goal of rotational invariance for shape descriptions, for ex-
ample, in no way implics that the rotation of a shape cannot affect its
interpretation [1].

To be useful for triggering the recognition process the initial rules
should be computable on images, should yicld descriptions which are
invariant under translations, rotations™* and uniform scaling and should
provide a first index into a table of shapes in memory.  Although a
planc curve y(s) = (z(s), y(s)) can be specified in many different ways,
a description based upon its curvature (s) is attractive. Such a repre-
sentation satisfies two of the invariance conditions, namecly translation
and rotation independence [2]. For any rotation # and translation (u, v),
~(s) is uniguely given by

o) = ( [ cosatelds +u, [ sina(epts +v ),

where

o) = [ wlo)ds +0

However, because curvature is scale dependent, a means for repre-
senting x(s) in a scale invariant manner still must be sought. In ad-
dition the representation itself should not be a continuous function if
it is to 'serve as an index into memory. Rather, the representation
should provide an articulation of k(s) into units which can be described
qualitatively. A reasonable approach is to exploit singular points of
orders 1 and 0, i.c. maxima, minima and zeroes of curvature [3. 4],
since the property of being a singular point is invariant under rotations,
translations and uniform scaling.

I MAXIMA, MINIMA AND CURVE "ORIENTATION"

Which points are maxima or minima of curvaturc depends on the
orientation of the curve. Though in general curvature is an unsigned
quantity, in the case of plane curves it is possible to assign a sign to
the curvature consistently once onc of the two possible orientations for
the curve is chosen. The orientation is usually specified in figures by
an arrow on the curve pointing in the direction in which the curve is
to be traversed. By a change in orientation of a plane curve the sign of
the curvature changes everywhere along the curve. In particular maxima
become minima and vice-versa. ‘The convention adopted here is that
figurc is to the left and ground to the right as the curve is traversed in
an oricntation. Thus knowing which side is figure determines the choice
of orientation on a curve or, conversely, choosing an orientation deter-
mines which side is figure by convention. Minima are then typically
associated with concavitics of the figure, maxima with convexitics (sce
figure 2). 1t is possible however for minima to have positive curvature,
as in the case of convex closed curves, or maxima 1o have negative cur-
vature, as when the orientation of the convex closed curve is reversed.
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Figure 2. Minima of curvature (indicated by slashes). Arrows indicate curve
oricntation.

I SEGMENTATION

Maxima, minima and zcrocs of curvature are all candidate points for
partitioning a curve into units in a manner invariant under rotations,
translations and uniform scaling. To choose among them we require
that the units should reflect natural parts of shapes [5, 6]. Fortunately,
when 3-D parts arce joined to create complex objects concavities will
generally be created in the silhouette.  Segmentation of the image at
concavitics therefore immediately encodes in a straightforward manner
an important property of the natural world that is not captured by max-
imas or zcroes of curvature. This is our general position argument for
scgmentation at minima of curvawre.”

Figure 3. Joining paris generally produces concavitics in the resulting silhouette.

1V DESCRIPTION OF PARTS: CONTQUR CODONS

Minima of curvature are used to break a curve into segments,
whereas maxima and zerocs arc used to describe the shape of cach seg-
ment. There are four basic types of segments, which we call “contour
codons”. Furthermore, onily certain codon joins (pairwise conncctions)
arc allowable, »

First, all curve segments contain zero, one or two points of zero cur-
vature. (This assumes that when «(s) = 0, x'(s) £ 0). Scgments
with no zeroes arc called type 0 codons, those with two zeroces are called
type 2 codons. If a scgment has exactly onc zcro, the zero may be
encountered either before (type 17) or after (type 11) the maximum
point of the segment when traversing the curve in the chosen orienta-
tion. Thus there are four basic codon types (figure 4).
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Figure 4. Contour codons (as defined in scction 4). Zeroes of curvature are
indicated by dots on the curves, minima by slashes.

If desired, codons can be further described by noting the positions
of the maximum and any zcrocs of curvature within the segment, nor-
malized by the total arc length of the segment. This should be done
qualitatively at first and then more quantitatively as is necessary. For
cxample, label the first minimum encountered in traversing a scgment
the “tail” of the segment, and the other minimum label the “head”.
‘Then the position of the maximum can be given crudely as much closer
to the head, much closer to the tail, or approximately in the middle.’
This gives the “skew™ of the curve. Zerocs can similarly be described as
closer to the maximum point, closer to the head/tail, or approximately
in the middle between the maximum and the head or tail.

Figure 5. Curve segments with identical singularities but different shapes.

As shown in figure 5, two segments can have identically placed max-
ima and zeroes, identical curvatures at the maxima and minima, and yet
appear quite different. The difference is the behavior of the curvature
between the singular points. This behavior can be described in an ap-
propriately invariant manner by the integral of curvature between each
of the singular points:

b
/(; k(s)ds = 6(b) — 6(a),

where 6(s) is the angle of the tangent at ~(s) given by 8(s) =
tan—1(y'(s)/2'(s)). A representation which notes the integral of cur-
vature between the singular points will give different descriptions for
curves A and B in figure 5.

There are restrictions on how codons may be joined at minima.
Define a codon join by the operationa o b, a,b € {0,1—,1F,2}
indicating that the head of a is smoothly connected to the tail of b, Note
that in general a o b £ b o a and hence the codon sequence is critical.
Not all conceivable codon joins are possible (figure 6).

The fact that not all conceivable-codon joins are allowable suggests
that the codon representation may be amenable to error correction tech-
niques. Consider, for example, the codon string ...¢;—1 ¢ ¢y - .. If
all codon joins were allowable then ¢; could take any one of the four
values {0 1 17 2} regardless of the values of ¢;—y and ¢j41. Thus
the value of ¢; would be independent of its context. Using figure 6,
however, one can show that in actuality the context of a codon restricts
its range of possible values to two on average. Onc can also show that in
one third of the contexts c; is actually uniquely determined.

*When general position is violated special rules may be needed to’
partition and describe the resulting image contour [5]. This will not be
considered here.
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Figure 6. Table of allowable codon joins. Rows and columns are labelled by
codon type, with the intended codon join sequence at cach table entry being (row
type, column type). Legal joins are indicated by a -, others by a —.

V. RELATION TO PERCEPTION

The representation of plane curves for recognition proposed here can
explain the well known obscrvation that a curve can look very different
depending on which side is perceived as figure and which as ground
[7]. (Sce figure 7a). The cxplanation is that a curve looks different
because its representations under the two possible orientations are com-
pletely different. Since the positions of the minima of curvature are
not invariant under a change in orientation (dircction of traversal) of a
curve, the parts of a curve as specified in its representation can be quite
different for the two orientations. (See figure 7b). If one chosc to define
parts by zerocs of curvature [8], or by minima and maxima [3, 4, 10], the
parts would not differ under a change in orientation of a curve.

2
codon string:
1217101~

codon string:
01"1*022

Figure 7. (a) Figure-ground reversal makes bounding curve appear different. (b)
Different codon string descriptions are assigned 10 a curve in its two orientations.

The perceptual significance of minima can also be demonstrated by
a simple modification of Rubin’s ambiguous face—goblet illusion [9]. If
the locations of minima are indicated by occlusions, then the perception
of the curve is biased toward one of its two orientations and either the
face or goblet impression becomes more apparent (figure 8). However,
when this figure is viewed at a distance so the added lines are not visible,
then the classical instability returns. Neither highlighting the zeroes
nor highlighting the maxima has comparable effect because they do not
correspond to natural points for segmentation.

Figure 8. Rubin's face-goblet illusion scgmented at minima to reduce the in-
stability.

VI LOCK-KEY ANDD MIRROR REVERSAL TRANSFORMS

The codon representation is designed to decouple the shape of a con-
tour from its disposition in space and its overall size. Consequently the
shape description is invariant under rotation, translation and uniform
scaling of the contour. However, as demonstrated in figure 7b, the shape
of a contour is not invariant when the direction of traversal along the
contour is reversed. It is not difficult to convince oneself also that the
shape description is not invariant under a mirror reversal of the contour.
The question naturally arises, Are there simple rules that define how the
codon string of a contour is transformed when the contour undergoes a
mirror reversal or a reversal in dircction of traversal (change in oricnta-
tion)?

In the casc of a mirror reversal the rule is quite simple. The mirror
transform of a codon string is obtained by reversing the dircction in
which the string is read {right to left rather than left to right) and revers-
ing the sign attached to cach type 1 codon. Thus the mirror transform
of < 1721717017 >is < 1T 017 1F 21 >, This rule
can also be used to find symmetrics within a single contour. If, for
cxample, one half of a codon string is found to be the mirror transform
of the remainder of the string, a necessary condition for the curve to be
symmectric has been found. Note that this applies to skew symmetry as
long as zeroes of curvature arc not made to appear or disappear by the
skew.

When the sense of traversal of a curve is reversed the codon
string transformation rule, called the lock-key transform, is unique
but apparently not simple. It is perhaps most casily specified
as a map from pairs of concatenated codons to codon singletons.
The codon doublets which map to cach codon singleton are
{(00, 01+, 170, 171F) s 0}, {(01—, 02) — 17—}, {170, 20) >
1+} and {(171~, 112, 21—, 22) — 2}. This lock-key mapping can.
be used, for example, to transform each of the codon strings of figure 7b,
into the other.



VII SUMMARY

An approach to the representation of plane curves for recognition has
been sketched. It is suggested that minima of curvature can be used
to break a curve into parts, and that maxima and zeroes can be used
to describe the parts. This approach explains why a curve can appear
quite different when figure and ground are reversed. Extensions of
the approach to piecewise-smooth curves are presented in Hoffman and
Richards [11]. Extensions to surfaces are desirable.
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