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valuable as a 
source of spatial information. Current techniques 
provide flow fields which are noisy and sparse, 
mak ing the recovery of spatial proper ties diffi- 
cul t at best. This paper describes a technique 
for locating discontinuities in optical flow, 
which typically correspond to object boundaries. 
A simple blurring interpolator is used to smooth 
out noise and produce denser fields. Discontinui- 
ties are found by locating the vector field 
equiv&lent of zero crossings in the Laplacian of 
a scalar field. The technique is illustrated by 
applying it to realistic vector fields which are 
both noisy and sparse. 

1. INTRODUCTION - 

The 
character 

concept of optical flow 
izing the two dimensiona 

- vector 
1 changes 

fields 
in time 

varying imagery - has received increased attention 
recently as a source of spatial information. With 
few exceptions (e.g. [l]), research has focussed 
on two non-overlapping tasks. Several techniques 
have been developed for obtaining vector fields 
from image sequences ~31. At the same time, 
methods have been derived for computing spatial 
properties from optical flow fields [4,5,6,7,8]. 
These methods presume that the flew field is known 
with high accuracy over a dense sampling of points 
in the field of view. In a realistic environment, 
current techniques provide vector fields which tire 
far tram ideal, being bo th noisy and sparse. A 
need exists to develop techniques for estimating 
spatial information which will function on realis- 
tic vector fields. This paper examines one such 
technique for locating discontinuities in optical 
flew. Such ciiscontinuities typically correspond 
to object boundaries. 

Errors may &rise from many sources 
determination of vector fields [9]. 
may be magnified and propagated 

in the 
Sensor noise 
in certain 

instances. Some techniques make assumptions, such 
as linear intensity gradients or locally constant 
vector fields, which frequently may be violated. 
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In addition, some matching techniques never 
attempt to match more than a very sparse set of 
image points [lo]. Spatial interpretation tech- 
niques requiring accurate input will probably not 
function well when provided with sparse and error 
prone vector fieids. As Bruss and Horn noted 
[ll], techniques which rely upon local derivatives 
of a vector field (e.g. [4]) will only magnify any 
existing error. If the original vector fields 
contain signif icant error, such a technique will 
not function properly. We need to develop tech- 
niques which will be relatively insensitive and 
adaptive to noisy and sparse vector field prob- 
lems. 

In realistic imagery there is an additional 
reference frame problem. Eoth camera and object 
translations and rotations are possible. The 
result is ambiguous vector fields, where a &iven 
vector pattern could represent many different 
spatial/motion combinations. Some vector field 
analysis techniques resolve this problem by limit- 
ing the type of allowable motion to, for example, 
object translation only [12], or camera transla- 
tion only [13]. Frequently these limitations may 
be violated in important or interesting image 
sequences. It is desirable for analysis tech- 
niques to be insensitive to the problems arising 
from unconstrained motion. 

One way to deal with the noise problem is to 
use global, rather than local, analysis. Motion 
parameters can be determined by some form of glo- 
bal optimization dependent on values over the 
whole field of view (e.g. [ll]). These motion 
parameters can then be used in a more local 
analysis to determine spatial properties. This 
technique is useful when the observer is moving 
relative to a static environment. When some sig- 
nificant portion of the scene is moving or when 
multiple moving objects are viewed by a stationary 
observer, the analysis breaks down because no sin- 
gle set of motion parameters is valid over the 
whole field of view. In such situations, it is 
desirable for an operator to be localized so that 
it is within object boundaries and at the same 
time perform some averaging over an area to reduce 
noise problems. Since object sizes are unpredict- 
able, it may be useful to apply an operator of 
variable size, producing an analysis with several 
degrees of locality. 

The technique for edge detection described in 
this paw-r attempts to deal with the problems of 
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noisy, sparse vector fields and arbitrary motion. 
A simple blurring interpolator is used to smooth 
out noise and produce denser fields. In general, 
arbitrary motion produces smoothly varying vector 
fields within an object boundary, and a discon- 
tinuity in the vector field at object edges. Cur 
technique relies upon locating these discontinui- 
ties, and so involves no restrictions on object 
motion. Two examples are provided which demon- 
strate the performance of the technique on sparse, 
noisy vector fields obtained from real imagery. 

2. METHOD -- 

A vector field can be described by the two 
component quantities of direction and magnitude. 
When the motion is limited to camera translation, 
vector direction will vary slowly across the 
entire image. At edges, discontinuities wili 
occur in magnitude only, and for most analytical 
purposes the vector field can be reduced to a 
scalar field [13,14]. When arbitrary motion ic 
allowed, the discontinuity may occur in either 
magnitude or direction, or both. The vector field 
in this case cannot be simplified to a scalar 
field. 

Our analysis of discontinuity detection for 
two-dimensional vector fields is similar to that 
of Marr and Hildreth in the sczilar case [15]. 
Discontinuity in a discrete image field means that 
the variability on either side of an edge is much 
less than the variability across the edge. If the 
edge is approximately linear and variability along 
the edge is suitably constrained, then the search 
for discontinuities can be decomposed into a 
separate analysis of the scalar fields correspond- 
ing to the x and y components of the optical flow. 
(These constraints are generalizations of the 
"linear variability" assumption used in [151.) A 
discontinuity in either component corresponds to a 
discontinuity in the origin&i field. Smoothing is 
performed to reduce the effects of noise and to 
serve as a bandpass filter on width of the edges. 
In the case of sparse vector fields, smoothing 
serves an additional function of interpolation. A' 
gaussian smoothing kernei is used, since it is 
optimal with respect to the condition of simul- 
taneous locality in the space and frequency 
domains. 

A discontinuity in either of the smoothed 
scalar fields will result in a peak in the first 
derivative of the field, and a zero crossing in 
the second derivative. The Laplacian is a more 
convenient operator than the seccind derivative, 
however, since it is invariant with respect to 
coordinate rotations, allowing a one pass search 
for edges with arbitrary orientations. For scalar 
fields that vary linearly parallel to straight 
edges, the Laplacian is equal to the second 
derivative taken in the direction of greatest 
variation. The Laplacian operator applied to a 
smoothed function has the additional advantage of 
being closely approximated by the difference of 
two gaussian functions [15]. 

ing 
Actua 1 discontinui 
the componentwise 

ti es are found by recombin- 
Lapiacians into a vector 

field and then searching for the vector field ana- 
l% of a scalar zero crossing. At an edge, there 
will be a zero crossing in at least one component 
of this difference field, and a value of zero in 
the other component. Both components may have a 
zero crossing. In either case , adjacent vectors 
will reverse direction when an edge lies between 
them. 

3. - 1MPLEMENTATION 

A sparse vector field was obtained from two 
adjacent images in a sequence using a point match- 
ing technique [lo]. The vector field was 
separated into its component x and y sc&iar 
fields. The fields were blurred by two different 
gaussian ktrneis with a ratio of standard dtvia- 
tions on the order of 1:1.6. The results wart: 
subtracted to form an estimate of the Lapiacian of 
the smoothed fieids [15]. The differrnced com- 
ponent fields were next recombined, and the 
resulting vector- field was searched for reversals 
in adjacent vectors. Two thresholds were enforced 
in the search for vector reversals. Theta, the 
angle separating adjacent vectors, was allowed to 
vary in a range around the ideal of 180 degrees. 
A lower threshold kiss placed on the combined 
lengths of adjacent vectors to ensure that the 
slope of edges was significant. 

Figures 1 and 2 shah the results when this 
technique was applied in two different motion 
situations. No gray scale information was used to 
assist the vector field technique in locating 
edges. In figure 1, the vectors on the elephant 
and tiger are of approximately equal magnitude, 
but differ in direction. In figure 2, the vectors 
on the two animals are of different magnitude but 
lie in approximately the same direction. The 
edges ovt~;h~d on tne vector fitlds indicate that 
the method works relatively well in both cases. 

4. DISCUSSION - 

The technique described in this paper illus- 
trates one aspect of a mere gcnersl concept of 
local referfnce frames. The larger of the LkO 

smoothing kernels acts to form a local average 
flow. Subtracting a less smoothed field results 
in information about local deviations away from 
this average. As we have shown, a direction&i 
reversal in this deviation field corresponds to a 
discontinuity in opticai flow. Other surface 
shape properties such as direction of orientation 
and sign of curvature also have well defined sig- 
natures in the deviation field. As long as only 
qualitative information is being estimated, a 
purely loch1 anaiysis is often sufficient. In 
such cases, there is no requirement for global 
motion or camera models . 

Another important spatial property concerning 
the asymmetry of occlusion edges is directly 
available from the deviation field and computed 
edge locations. While edges are often described 
as a boundary between two image regions, occlusion 
edges are only the boundary of one or the other of 
the corresponding surfaces. Determining which 
side of a discontinuity in disparity corresponds 
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to the occluding surface provides information 
about both scene structure and relative depth. 

The key to resolving this edge ambiguity is 
to note that over time, the edge will have the 
same disparity as the surface to which it 
corresponds. Furthermore, only the motion com- 
ponents perpendicular to the edge need be con- 
sidered, since only they lead to asymmetric 
changes in the appearance of the boundary. This 
observation results in a simple computational 
te5t. Once an edge has been found, a highly 
smoothed field may be used to get an estimate of 
the expected image position of the edge in a sub- 
sequent frame. Disparity estimates in this 
smoothed field will be affected by regions on 
either side of the edge dnd hence will in fact be 
an average. of the two SC tual values. The reai 
edge will bt: translating over the image with a 
speed either faster or slower than the estimate. 
Thus, at the "rxpectcd" Edge location, the devia- 
tion vectors will not in fact exhibit a direc- 
tional reversal. However, the projection of the 
deviation vector at this point onto the normal 
across the edge points toward the occluded sur- 
face. Figure 3 presents one possible motion case 
to which this anaiysis is applied. 

(a) (b) 

Figure 3. (a) Disparity field obtained from ini- ~- 
tial image pair, with motion of regions A and B 
indicated by vectors. (b) lkvktion field from a 
subsequent image pair, when A is the occluding 
surface. lhe expected edge is shown as a dotted 
line, the true edge as a solid line. The devia- 
tion vector at the expected edge loc;tion points 
toward the occluded surface. 

As with gray scale edges, it is useful to 
anaiyze optical flow over a range of resolutions. 
The deviation fields corresponding to different 
blurring kernels give information about shape pro- 
perties at different scales. The use of deviation 
fields is particularly suited to systems which 
estimate disparities between image frames using 
coarse to fine matching [16,14,17]. The results 
of matching at coarser resolutions can be used to 
establish local reference frames against which 
results of finer matches can be compared. Thus, 
looking across leveis of resolution can provide an 
important source of information about shape. 
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Figure 1. -- (a) and (b) Original image pair. (c) 
Vector field obtained with a point matching tech- 
nique. The edges overlaid on the vector field 
were obtained with the technique described in the 
paper. 

(cl 

Figure 2. ~- (a) hnd (b) Original image pair. (cj 
Vector field obtained with a point matching tcch- 
nique, with edges overlaid. 
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