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ABSTRACT 

This paper describes the results obtained in 
a research program ultimately concerned with 
deriving a physical sketch of a scene from one or 
more images. Our approach involves modeling 
physically meaningful information that can be used 
to constrain the interpretation process, as well 
as modeling the actual scene content. In 
particular, we address the problems of modeling 
the imaging process (camera and illumination), the 
scene geometry (edge classification and surface 
reconstruction), and elements of scene content 
(material composition and skyline delineation). 

I INTRODUCTION 

Images are inherently ambiguous 
representations of the scenes they depict: images 
are 2-D views of 3-D space, they are single slices 
in time of ongoing physical and semantic 
processes, and the light waves from which the 
images are constructed convey limited information 
about the surfaces from which these waves are 
reflected. Therefore, interpretation cannot be 
strictly based on information contained in the 
image; it must involve, additionally, some 
combination of a priori models, constraints, and 
assumptions. In current machine-vision systems 
this additional information is usually not made 
explicit as part of the machine's data base, but 
rather resides in the human operator who chases 
the particular techniques and parameter settings 
to reflect his understanding of the scene context. 
This paper describes a portion of the SRI program 
in machine vision research that is concerned with 
identifying and modeling physically meaningful 
information that can be used to automatically 
constrain the interpretation process. In 
particular, as an adjunct to any autonomous system 
with a generalized competence to analyze imaged 
data of 3-D real-world scenes, we believe that it 
is necessary to explicitly model and use the 
following types of knowledge: 

(1) 

(2) 

(3) 

(4) 

(5) 

(f-5) 

Camera model and geometric constraints 
(location and orientation in space from 
which the image was acquired, vanishing 
points, ground plane, geometric horizon, 
geometric distortion). 

Photometric and illumination models 
(atmospheric and image-processing system 
intensity-transfer functions, location 
and spectrum of sources of illumination, 
shadows, highlights). 

Physical surface models (description of 
the 3-D geometry and physical 
characteristics of the visible surfaces; 
e-g-, orientation, depth, reflectance, 
material composition). 

Edge classification (physical nature of 
detected edges; e.g., occlusion edge, 
shadow edge, surface intersection edge, 
material boundary edge, surface marking 
edge). 

Delineation of the visible horizon 
(skyline) 

Semantic context (e.g., urban or rural 
scene, presence of roads, buildings, 
forests, mountains, clouds, large water 
bodies, etc.). 

In the remainder of this paper, we will 
describe in greater detail the nature of the above 
models, our research results concerning how the 
parameters for some of these models can be 
automatically derived from image data, and how the 
models can be used to constrain the interpretation 
process in such tasks as stereo compilation and 
image matching. 

If we categorize constraints according to the 
scope of their influence, then the work we describe 
is primarily concerned with global and extended 
constraints rather than with constraints having 
only a local influence. To the extent that 
constraints can be categorized as geometric, 
photometric, or semantic and scene dependent, it 
would appear that we have made the most progress in 
understanding and modeling the geometric 
constraints. 
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II CAMERA MODELS AND GEOMETRIC CONSTRAINTS 

The camera model describes the relationship 
between the imaging device and the scene; e-g-, 
where the camera is in the scene, where it is 
looking, and more specifically, the precise mapping 
from points in the scene to points in the image. 
In attempting to match two views of the same scene 
taken from different locations in space, the camera 
model provides essential information needed to 
contend with the projective differences between the 
resulting images. 

In the case of stereo reconstruction, where 
depth (the distance from the camera to a point in 
the scene) is determined by finding the 
corresponding scene point in the two images and 
using triangulation, the camera models (or more 
precisely, the relative camera model) limit the 
search for corresponding points to one dimension in 
the image via the "epipolar" constraint. The plane 
passing through a given scene point and the two 
lens centers intersects the two image planes along 
straight lines; thus a point in one image must lie 
along the corresponding (epipolar) line in the 
second image, and one need only search along this 
line, rather than the whole image to find a match. 

When human interaction is permissible, the 
camera model can be found by having the human 
identify a number of corresponding points in the 
two images and using a least-squares technique to 
solve for the parameters of the model [5]. If 
finding the corresponding points must be carried 
out without human intervention, then the 
differences in appearance of local features from 
the two viewpoints will cause a significant 
percentage of false matches to be made; under these 
conditions, least squares is not a reliable method 
for model fitting. Our approach to this problem 
[3] is based on a philosophy directly opposite to 
that of least-squares -- rather than using the full 
collection of matches in an attempt to -average 
out" errors in the model-fitting process, we 
randomly select the smallest number of points 
needed to solve for the camera model and then 
enlarge this set with additional correspondences 
that are compatible with the derived model. If the 
size of the enlarged compatibility set is greater 
than a bound determined by simple statistical 
arguments, the resulting point set is passed to a 
least-squares routine for a more precise solution. 
We have been able to show that as few as three 
correspondences are sufficient to directly solve 
for the camera parameters when the three-space 
relationships of the corresponding points are 
known; a recent result [13] indicates that 5 to 8 
points are necessary to solve for the relative 
camera model parameters when three space 
information is not available a priori. 

The perspective imaging process (the formation 
of images by lenses) introduces global constraints 
that are independent of the explicit availability 
of a camera model; particularly important are the 
detection and use of "vanishing points." A set of 
parallel lines in 3-D space, such as the vertical 
edges of buildings in an urban scene, will project 
onto the image plane as a set of straight lines 

intersecting at a common point. Thus, for example, 
if we can locate the vertical vanishing point, we 
can strongly constrain the search for vertical 
objects such as telephone or power poles or 
building edges, and we can also verify conjectures 
about the 3-D geometric configuration of objects 
with straight edges by observing which vanishing 
points these edges pass through. The two 
horizontal vanishing points corresponding to the 
rectangular layout of urban areas, the vanishing 
point associated with a point of illumination [8], 
and the vanishing point of shadow edges projected 
onto a plane surface in the scene, provide 
additional constraints with special semantic 
significance. The detection of clusters of 
straight parallel lines by finding their vanishing 
points can also be used to automatically screen 
large amounts of imagery for the presence of man- 
made structures. 

The technique we have employed to detect 
potential vanishing points involves local edge 
detection by finding zero-crossings in the image 
convolved with both Gaussian and Laplacian 
operators [9], fitting straight line segments to 
the closed zero-crossing contours, and then finding 
clusters of intersection points of these straight 
lines. In order to avoid the combinatorial problem 
of computing intersection points for all pairs of 
lines, or the even more unreasonable approach of 
plotting the infinite extension of all detected 
line segments and noting those locations where they 
cluster, we have implemented the following 
technique. Consider a unit radius sphere 
physically positioned in space somewhere over the 
image plane (there are certain advantages to 
locating the center of the sphere at the camera 
focal point if this is known, in which case it 
becomes the Gaussian sphere [6,7], but any location 
is acceptable for the purpose under consideration 
here). Each line segment in the image plane and 
the center of the sphere define a plane that 
intersects the sphere in a great circle -- if two 
or more straight lines intersect at the same point 
on the image plane, their great circles will 
intersect at two common points on the surface of 
the sphere, and the line passing through the center 
of the sphere and the two intersection points on 
the surface of the sphere will also pass through 
the intersection point in the image plane. 

111 EDGE CLASSIFICATION 

An intensity discontinuity in an image can 
correspond to many different physical events in the 
scene, some very significant for a particular 
purpose, and some merely confusing artifacts. For 
example, in matching two images taken under 
different lighting conditions, we would not want to 
use shadow edges as features; on the other hand, 
shadow edges are very important cues in looking for 
(say) thin raised objects. In stereo matching, 
occlusion edges are boundaries that area 
correlation patches should not cross (there will 
also be a region on the "far" side of an occlusion 
edge in which no matches can be found); occlusion 
edges also define a natural distance progression in 
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an image even in the absence of stereo information. 
If it is possible to assign labels to detected 
edges describing their physical nature, then those 
interpretation processes that use them can be made 
much more robust. 

We have implemented an approach to detecting 
and identifying both shad05 and occlusion edges, 
based on the follok;ing general assumptions about 
images of real scenes: 

(1) The major portion of the area in an image 
(at some reasonable resolution for 
interpretation) represents continuous 
surfaces. 

(2) Spatially separated parts of a scene are 
independent, and their image projections 
are therefore uncorrelated. 

(3) Nature does not conspire to fool us; if 
some systematic effect 1s observed that 
tie normally would anti.c-lpate as caused by 
an expected phenomena due to imaging or 
lighting, then it is likely that our 
expectations provide the correct 
explanation; e.g., coherence in the image 
reflects real coherence in the scene, 
rather than a coincidence of the 
structure and alignment of distinct scene 
constituents. 

Consider a curve overlayed on an image as 
representing the 1ocatLon of a potential occlusion 
edge in the scene. If be construct a series of 
curves parallel to the given one, then ce bould 
expect that for an occlusion edge, there bould be a 
high correlation between adjacent curves on both 
sides of the given curve, but not across this 
curve. That Is, on each side, the surface 
continuity assumption should produce the required 
correlation, but across the reference curve the 
assumption of remote parts of the scene being 
independent should produce a loti correlation score. 
In a case Ghere the reference curve overlays a 
shadow edge, tie tjould expect a continuous high 
(normalized) correlation between adjacent curves on 
both sides and across the reference curve, but the 
regression coefficients should shoti a discontinuity 
as be cross the reference curve. This technique is 
described in greater detail in [14]. Figure 1 
shok;s experimental results for an occlusion edge. 

IV INTENSITY MODELING (and Material Classification 

Given that there is a reasonably consistent 
transform betaeen surface reflectance and image 
intensity, the exact nature of this transform is 
not required to recover rather extensive 
information about the geometric configuration of 
the scene. It is even reasonable to assume that 
shadows and highlights can be detected aithout more 
precise knowledge of the intensity mapping from 
surface to image; but if tie Kish to recover 
information about actual surface reflectance or 
physical composition of the scene, then the problem 
of intensity modeling must be addressed. 

Even relatively simple intensity modeling must 
address three issues: (1) the relationship betceen 
the incident and reflected light from the surface 
of an object in the scene as a function of the 
material composition and orientation of the 
surface; (2) the light that reaches the camera lens 
from sources other than the surface being viewed 
(e.g., light reflected from the atmosphere); and 
(3) the relationship between the light reaching the 
film surface and the Intensity value ultimately 
recorded in the digital image array. 

Our approach to intensity modeling assumes 
that se have no scene-specific information 
available to us other than the image data. We use 
a model of the imaging process that incorporates 
our knobledge of the behavior of the recording 
medium, the properties of atmospheric transmission, 
and the reflective properties of the scene 
materials. In particular for aerial imagery 
recorded on film, ce use an atmospheric model that 
assumes a constant amount of atmospheric 
reflectance independent of scene radiation, a film 
model that assumes a logrithmic relation bettieen 
incoming radiation intensity and film density, and 
a surface reflectance model that assumes Lambertian 
behavior (the reflected light is proportional to 
the incident light; the constant of proportionality 
is a function of the surface material; and the 
relative brightness of the surface is independent 
of the location of the vietier). We identify a fete 
regions of knoen material in a scene -- three 
materials are sufficient -- to calibrate our model 
to the particular Image. The resultant model is 
used to transform the given image into a nea image 
depicting the actual scene reflectances. 

Our intensity model has the form 

d = a*log(r+b) + c 

uhere d is the image intensity, r the scene 
reflectance, a and c parameters associated with the 
film process, and b is the ratio of atmospheric 
backscatter to scene illumination. We determine 
0 and c by fitting our model to the identified 
(d,r) pairs. The fitting is achieved by guessing 
b -- Fe knot b lies in the range 0 to 1 -- applying 
the least squares method to the resultant linear 
equation to calculate a,c, and the residual sum, 
and adjusting b to minimize this residual sum. 

The resultant 
reasonable material 

reflectance image 
labeling and image 
the basis of the to be achieved on 

information alone. 

has allo&ed 
segmentation 
reflectance 

V SHADOW DETECTION (and Raised Object Cueing) 

The ability to detect and properly identify 
shadows is a major asset in scene analysis. For 
certain types of features, such as thin raised 
objects in a vertical aerial image, it is often the 
case that only the shadoti is visible. Knowledge of 
the sun*s location and shado& dimensions frequently 
allows us to recover geometric information about 
the 3-D structure of the objects casting the 
shadows, even in the absence of stereo data [8,10]; 
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but perhaps just as important, distinguishing Our experience to date, on a data base of 15 
shadows from other intensity variations eliminates scenes, leads us to believe that although we can 
a major source of confusion in the interpretation obtain reasonably good results when the confusing 
process. factors mentioned above do not dominate the scene, 

Given an intensity discontinuity in an image, we still make local mistakes which will require 

we can employ the edge labeling technique described more sophisticated reasoning to eliminate; to the 

earlier to determine if it is a shadow edge. extent that the confusing factors become more 

However, some thin shadow edges are difficult to prominent, the problem can be made arbitrarily 

find, and if there are lots of edges, we might not hard. Figure 4 shows a typical image and the 

want to have to test all of them to locate the skyline delineation we have obtained for it. Prior 

shadows. We have developed a number of techniques work on this topic, employing considerably more 

for locating shadow edges directly, and will now semantic knowledge then in our approach, is 

describe a simple but effective method for finding contained in Sloan [ll]. 

the shadows cast by thin raised objects (and thus 
locating the objects as well). 

VII SURFACE MODELING 

Obtaining a detailed representation of the 
visible surfaces of the scene, as (say> a set of 
point arrays depicting surface orientation, depth, 
reflectance, material composition, etc., iS 
possible from even a single black and white image 
[12,21- A large body of work now exists on this 
topic, and although directly relevant to our 
efforts, it is not practical to attempt a 
discussion of this material here. There is, 
however, one key difference between surface 
modeling and the other topics we have discussed -- 
the extent to which the particular physical 

knowledge modeled constrains the analysis of other 
parts of the scene. In this paper we have been 
primarily concerned with physical models that 
provide global or extended constraints on the 
analysis; surface modeling via point arrays 
provides a very localized constraining influence. 

VI VISUAL SKYLINE DELINEATION 

Although not always a well defined problem, VIII CONSTRAINT-BASED STEREO COMPILATION 
delineation of the land-sky boundary provides 
important constraining information for further 
analysis of the image. Its very existence in an 
image tells us something about the location of the 
camera relative to the scene (i.e., that the scene 
is being viewed at a high-oblique angle), allows us 
to estimate visibility (i.e., how far we can see -- 
both as a function of atmospheric viewing 
conditions, and as a function of the scene 
content), provides a source of good landmarks for 
(autonomous) navigation, and defines the boundary 
beyond which the image no longer depicts portions 
of the scene having fixed geometric structure. 

In our analysis, we generally assume that we 
have a single right-side-up image in which a 
(remote) skyline is present. Confusing factors 
include clouds, haze, snow-covered land structures, 
close-in raised objects, and bright buildings or 
rocks that have intensity values identical to those 
Of the sky (a casual inspection of an image will 
often provide a misleading opinion about the 
difficulty of skyline delineation for the given 
case). Our initial approach to this problem was to 
investigate the use of slightly modified methods 
for linear delineation [41 and histogram 
partitioning based on intensity and texture 
measures; we employ fairly simple models of the 
relationship between land, sky, and cloud 
brightness and texture. 

The computational stereo paradigm encompasses 
many of the important task domains currently being 
addressed by the machine-vision research community 
[l]; it is also the key to an application area of 
significant commercial and military importance -- 
automated stereo compilation. Conventional 

approaches to stereo compilation, based on finding 
dense matches in a stereo image pair by area 
correlation, fail to provide acceptable performance 
in the presence of the following conditions 
typically encountered in mapping cultural or urban 
sites: widely separated views (in space or time), 
wide angle views, oblique views, occlusions, 
featureless areas, repeated or periodic structures. 
As an integrative focus for our research, and 
because of its potential to deal with the factors 
that cause failure in the conventional approach, we 
are constructing a constraint-based stereo system 
that encompasses many of the physical modeling 
techniques discussed above. It is not our intent 
to discuss this system here, but rather to indicate 
the framework in which the distinct geometric, 
photometric, and semantic constraints will 
interact; Figure 5 shows some examples of this 
interaction. 
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IX CONCLUDING COMMENTS 

When a person views a scene, he has an 
appreciation of where he is relative to the scene, 
which way iS up, the general geometric 
configuration of the surfaces (especially the 
support and barrier surfaces), and the overall 
semantic context of the scene. The research effort 
we have described is intended to provide similar 
information to constrain the more detailed 
interpretation requirements of machine vision 
(e-g-, such tasks as stereo compilation and image 
matching). 
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Figure 1 
Example of an Occlusion Edge 

California 
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Figure 2 

Detection of Thin Shadow Lines 
(result of line detection 

and integration) 

Figure 3 

Highest Likelihood Shadow 
Lines Overlayed on 

Original Image 

Figure 4 

Results of Skyline Delineation 

(a> (b) 

Figure 5 

cc> 

Constraint-Based Detection and Matching of Vertical Edges 

(a> stereo-images-top image (b) lines found cc> vertical lines found 
left view, bottom image 
right view 
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