
A SYSTEMATIC APPROACH TO CONTINUOUS GRAPH LABELING 
WITH APPLICATION TO COMPUTER VISION* 

M. D. Diamond, N. Narasimhamurthi, and S. Ganapathy 

Department of Electrical and Computer Engineering 
University of Michigan 
Ann Arbor, MI 48109 

ABSTRACT 
The discrete and continuous graph labeling problem are 
discussed. A basis for the continuous graph labeling 
problem is presented, in which an explicit connection 
between the discrete and continuous problems is made. 
The need for this basis is argued by noting conditions 
which must be satisfied before solutions can be pursued 
in a formal manner. Several cooperative solution algo- 
rithms based on the proposed formulation and results of 
the application of these algorithms to the problem of 
extracting line drawings are presented. 

I XHECIONTINlrnrlrGRAPHLAREXWGJzQRLEM 
A graph labeling problem is one in which a unique 

label, A from a set A of possible labels must be assigned 
to each vertex of a graph G = (V,E). The assignment 
must be performed given information about the relation- 
ship between labels on adjacent vertices and incomplete 
local information about the correct label at each vertex. 
In a discrete graph labeling problem [ 1,2,3], the local 
information consists of a subset, & s A, of the label set 
associated with vertex vi E V, from which the correct 
label for each vertex must be chosen. The contextual 
information consists of binary relations Ru s Axh, 
referred to as constraint relations, assigned to each 
edge vivj E E. The function of the constraint relations is 
to make explicit which labels can co-occur on adjacent 
vertices. The graph, label set, and constraint relations 
together form a constraint network [2,5]. An (unambi- 
guous) labeling is a mapping which assigns a unique 
label h E A to each vertex of the graph. A labeling is con- 
sistent if none of the constraint relations is violated, 
that is, if label h is assigned to vertex Vi and label h’ is 
assigned to vertex vj then the pair (h,X’) is in the con- 
straint relation Rii for the edge ViVj E E. 

Given initial labeling information, several search 
techniques have been developed which can be used to 
derive consistent labelings. The original backtracking 
search described by Waltz [ 11 was later implemented in 
parallel by Rosenfeld et al. [6], resulting in the discrete 
relaxation operator. At the same time a continuous 
analogue, the continuous graph labeling problem was 
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proposed, as well as a continuous relaxation algorithm 
for its solution, and since then several other relaxation 
algorithms have been proposed [7,8]. 

In a continuous graph labeling problem, the initial 
information consists of strength measures or figures of 
merit, pi (Aj), given for each label Aj E A on each vertex 
Vi E I! The strength measures are assumed generated 
by feature detectors which are making observations in 
the presence of noise. They usually take onvalues in the 
range [O,l], a 0 indicating no response, and a 1 indicat- 
ing a strong response. The contextual information, 
which is represented in terms of constraint relations for 
the discrete graph labeling problem, are replace by 
measures of compatibility, usually taking values in the 
range [-1,1] or [O,l], which serve to indicate how likely 
the pairs of labels are to co-occur on adjacent vertices. 

Several problems have resulted in the extension of 
the graph labeling problem from the discrete to continu- 
ous case. In the discrete case the presence or absence 
of a pair in a constraint relation can be determined with 
certainty depending on what labelings are to be con- 
sidered consistent. In the continuous case, however, 
there is apparently no formal means to assign specific 
numeric values to the compatibility coefficients, partic- 
ularly for shades of compatibility between “impossible” 
and “very likely”, although several heuristic techniques 
have been proposed [7,9,10]. Furthermore, with respect 
to a constraint network, the concept of consistency is 
well defined, The objective the continuous relaxation 
labeling processes has often been stated to be that of 
improving consistency, however, the definition for con- 
sistency has not been given explicitly. This latter issue 
is circumvented in several of the optimization 
approaches which have been proposed [11,12,13], where 
the an objective function, defined in terms of the compa- 
tibility coefficients and the initial strength measures is 
given. However, because of the dependence of the objec- 
tive functions on the compatibility coefficients, and 
because no real understanding of the role which these 
coefficients play yet exists, it is often difficult to 
describe the significance of these approaches in terms 
of what is being achieved in solving the problem. 

In an alternate approach to the continuous graph 
labeling problem [14] an attempt has been made to 
maintain the characteristics of the original problem 
while allowing for more systematic approaches toward a 
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solution. It is felt that solutions to the reformulated 
problem will be more useful because it will be easier to 
relate the results of the solution algorithm to what is 
being achieved in the problem domain. In order to 
develop this approach, we review the characteristics of 
the solutions to the graph labeling problem which have 
appeared so far (refer to Fig. 1). 

The inputs to the process are the initial strength 
measures ipi'( i=l,s..,W 0 j=l ,...,mj which can be 
represented by an 7~ x’I)?. dimensional vector: 

F = (p 10 (AI), p : @2), . . . , p:(&)) E Pm. 

Since the selection of a particular label at a given vertex 
is related to the label selections made at other (not 
necessarily adjacent) vertices, information about the 
label selection at that vertex is contained in the initial 
labeling values distributed over the extent of the net- 
work. The function of the global enhancement process, 
g, is to accumulate this evidence into the labeling values 
at the given vertex. The output vector: 

is used by a process of local maxima selection [ 151, s , to 
choose a labeling: 

r; = (A,, 43 . . . I &J, 

where & is the label assigned to vertex ui. Thus g is a 
function, g:Rnm + Rnm and s is a function is 
s:Rnm + C,,(A), where C,(A) is the set of possible label- 
ings. The hope is that labeling resulting from the pro- 
cess s (e @)) is an improvement over the labeling result- 
ing from direct local maxima selections @). 

If a numerical solution is to be sought for this prob- 
lem, then a formal definition must be given to the con- 
cept of an improved labeling. In previous work, particu- 
larly with respect to computer vision, improvements 
were rated subjectively, or in the case of an experiment 
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Fig. 1: Function of the global enhancement process: X 
represents an improved labeling with respect to 2. 
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where the solution was known in advance, by the number 
of misclassified vertices. In our formulation this issue is 
resolved by assuming that the problem domain specifies 
an underlying constraint network, or can be modeled to 
do so. The objective is then to use the initial information 
to choose a labeling that is (a) consistent with respect to 
this constraint network, and (b) which optimizes a 
prespecified objective function. In this extension from 
the discrete to the continuous graph labeling problem, 
the constraint relations remain intact. 

We are currently investigating optimal solutions to 
this formulation of the graph labeling problem based on 
a maaGnu~-sum decision rule, that is, the rule is to 
choose a consistent labeling such that sum of the initial 
labeling values is maximal. A solution to this problem 
could be extended in a straightforward manner to cer- 
tain well established decision rules such as,is found, for 
example, in nearest neighbor classification. 

Though the decision rule serves to make explicit 
what is meant by an improved labeling, it is defined glo- 
bally. The problem remains to implement it in terms of 
a cooperative process. The concept of a cooperative 
process, although not well defined, can be characterized 
in terms certain general properties [U1179]. Our 
research is into algorithms which exhibit certain of 
these properties, such as locality, and simplicity. In an 
aptimul solution, the labeling algorithm must, further- 
more, perform the label selection in accordance with the 
given decision rule. Other important issues, such as 
speed of convergence are also being addressed. Two 
approaches which have some of these properties are 
demonstrated in the following section. The first is an 
heuristic approach based on dynamic programming [ 141 
which converges very rapidly and with good results, but 
does not guarantee a consistent labeling. The second 
approach is based on linear programming. Details on 
the latter algorithm will be presented at a later date. 

III -- 

In this section, we demonstrate the application of 
the two approaches discussed above to the problem of 
extracting polygon approximations of the outlines of 
objects in a scene. The experiments described here are 
based on the reconstruction of simple closed curves 
(Fig. 2) when noise has been added to the initial labeling 
values. 

The graph used in this experiment is a 16.by 16 ras- 
ter. Each vertex is represented by a pixel, and is adja- 
cent to its eight immediate neighbors. The associated 
label set is shown in Fig. 3. A pair of labels on adjacent 
pixels are consistent if an outgoing line segment is not 
broken across a common border or corner, and incon- 
sistent otherwise. Examples of consistent pairs of labels 
are given in Fig. 4, and examples of inconsistent pairs of 
labels are given in Fig. 5. 

*In terms of decision theory, every consistent label- 
ing constitutes a class and the input vector p is a point 
in an 7~x9~~ dimensional feature space. 
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Fig. 2: Initial labeling 
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Fig. 4: Examples of locally consistent label pairs. 

Uniformly independently distributed noise was 
added to the labeling values at each pixel resulting in 
the labeling, by local maxima selection, shown in Fig. 6. 
The two cooperative algorithms were applied to the ini- 
tial labeling in attempt to reconstruct the original 
curves. The first is the dynamic programming approach 
with data moving along the eight major directions of the 
raster (two horizontal, two vertical, and four diagonal). 
The second is the algorithm based on a linear program- 
ming approach. The performance of these algorithms 
are presented in Fig. ‘7 and Fig. 6, which show the result- 
ing labeling (by choosing the label with greatest strength 
at each pixel) after 2 and 4 iterations. The dynamic pro- 
gramming approach reaches a fixed point after 2 itera- 
tions, however, the result is not a consistent labeling. 
The linear programming algorithm reconstructs the ori- 
ginal labeling after six iterations. 

IV IIMXzWB 
Our interest here has been to restate the continu- 

ous graph labeling problem in a manner which allows for 
a systematic approachs to a solution. The formulation 
which we have presented amounts to the classification of 

Fig. 3: Label set for line drawing description. Fig. 5: Examples of inconsistent label pairs. 
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Fig. 6: Initial labeling plus noise. 
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Fig. 8a: Output of the linear programming algorithm 
after two iterations. 

Fig. 7: Output of the dynamic programming algorithm 
after two iterations. Note: the algorithm has reached a 
fixed point. 

Fig. 8b: Output of the linear programming algorithm 
after four iterations. 
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consistent labelings according to a prespecified decision 
rule. As with previous approaches, consistency is 
defined on a local basis to make sense with respect to a [101 
particular problem. For example, if the objective is to 
extract continuous curves as in the experiment 
described above, consistency is maintained between 
pairs of labels when the scene events they represent do 1111 
not allow for broken lines. The global nature of the deci- 
sion rule leads to a more intuitive description of what 
the techniques accomplishes with respect to the original [12 
problem. However, as a consequence, the problem of 
implementing this rule on a local basis arises. 

Two approaches to the reformulated problem have 
been demonstrated above. Our present feeling is that a [ 13 
linear programming approach should yield an optimal 
solution to the continuous graph labeling problem based 
on a maximum-sum decision rule. However, the restric- 
tion that the algorithm must be implemented in a local 
manner has led to some theoretical problems, such as 
resolving cycling under degeneracy which remain to be [l-+1 
solved. Our investigation into these problems is continu- 
ing. Obviously, the value of this approach and any tech- 
niques which may be derived from it will depend on 
whether or not real world applications can be modeled in [151 
such a manner so that the absolute consistency between 
pairs of labels is meaningful. We hope to demonstrate 
this in at least one problem, deriving line drawings from 
real world scenes, in forthcoming results. 
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