
Dividing Up The Question Answering Process*

Marc Luti

Division of Computer Science
Department of EECS

University of California, Berkeley
Berkeley, Ca. 94720

Abstract
This paper describes a question answer-

ing program which divides question answer-
ing into two separate processes: answer for-
mation and answer expression. Rather than
gathering possible answers and choosing the
best among them, the program accesses the
database and finds all components of possi-
ble answers, e.g. a causal chain, and then
passes this information to an expression pro-
gram which formulates a proper answer.

1. Introduction
I have developed a question answering

program that will answer questions about
simple stories. In my program, question-
answering is divided up into two separate
processes: 1) answer formation and 2)
answer expression. The program first looks
down a causal chain which is formed by the
story-understanding program and figures
out in what part of the chain the answer lies.
The answer can also be a subset of the chain,
sometimes a quite long one. The second
part of the program takes this long chain
and decides what things are important to
express to the questioner. This answer
expresser uses general rules of expression to
figure out what it needs to include to make
the answer understandable, informative and
interesting.

This solution is different from other
question-answering algorithms (e.g. Wino-
grad 19’72, Lehnert 1977) which view ques-
tion answering as one process. These pro-
grams gather possible answers, and then
choose the ‘best’ answer from among them.

*This research was sponsored in part by the Office of
Naval Research under contract N00014-80-C-0732 and
the National Science Foundation under grant MCS79-
06543.

My system first gets the chain which I con-
sider to be the answer to the question, and
then figures out which parts of the chain
should be generated into English as the
answer. The advantage of my approach is
that it allows one to treat the answer as one
entity and use the answer expression
mechanism to express what people are
interested in. The resulting answers are
generally more informative and conversa-
tionally appropriate than those generated by
other algorithms.

The program works in conjunction with
FAUSTUS, a story understanding program
that specialises in goal-based stories. [2,3]
After a story is initially ‘read’ by PHRAN, a
parser, [11 it is then passed to this PAMELA
and ‘understood’. The question answering
program is passed a database which consists
of events, inferences, and most importantly,
for my purpose, causal chains which instan-
tiate events in the story as steps of particu-
lar plans and plans for particular goals. Con-
tained in this causal chain is the actual
‘understanding’ of the sequence of events in
the story, what caused what, and what goal
actors had in mind when they performed a
particular act or plan. After a question is
asked, this question is parsed by the same
parser that parsed the story, and then the
answer is formulated by looking at the data-
base. Finally, the answer is passed to the
answer expresser which sends the answer to
a natural language generator.

71

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

2. Program Examples**
The following examples were processed

by my program.

Story: Susan saved her money from her
allowance. One day she rode her bike to
the bookstore and bought the book that
her teacher had recommended. Susan
did very well on her math test the follow-
ing week.

Ql:
Al:

Why did Susan buy the book?
So that she could study from it and do
well on her exam.

Q2:

A2:

How did Susan do so well on her math
exam?
She bought a book that her teacher had
recommended and studied from it.

Q3: How did she get the book?
A3: By riding her bike to the bookstore.

3. F’inding the Best Answer

A difficult and important part of answer-
ing a question is not in tiding an answer to
the question, but finding the best answer. In
a database of causal chains, if one can find
an event in the database then there may be
many possible answers to a given question.
Consider the previous story.

If we ask:

Q4: Why did Susan buy the book?

The following answers are obtained by step-
ping down the causal chain.

A4a:Because she wanted to have it.
A4b:Because she wanted to read it.
A4c:Because she wanted to know math.
A4d:Because she wanted to do well on her

exam.

Note that the items nearer the top of the
goal structure constitute better answers
although the best answer would be some-
thing like:

**At this point the program is not connected to the
natural language parser at Berkeley called PHRA.Y or
the generator PHRED (Wilensky and Arens, 1980).
The questions and answers are therefore translated
from the conceptual form I now use.

A4e:So that she could study it and do well on
her math test.

However, in a more complicated story,
merely looking to the end of chain might not
work quite as well. For example, if in the
previous story we added:

She put the book on her head and
learned the material through osmosis.
Susan did very well on her math test the
following week.

Clearly, Answer4d is no longer a good
answer.

One possible solution is including only
‘important’ answers. Important inferences
might include abnormal plans, natural disas-
ters, etc. The problem with this was that
even though these ‘important’ inferences
definitely should be included in the answer,
one should not necessarily stop at that point
in the chain and say that this is the answer.
For example, just stopping at ‘important’
events in response to question4 one would
get:

A4f:So that she could put it put it on her
head.

A4g:So that she could learn by osmosis.

which is less desirable than:
A4h:So that she could learn from the math

book by osmosis and do well on her
exam.

4. Dividing up the Question Answering
Process

My program is able to find these better
answers because of the separation of finding
the answer (the subset of the chain) from
expressing the answer to the user. Instead I
use the two programs:

Answer-Formulator: looks down a causal
chain, figures out where what parts of
the chain are relevant to an answer and
returns a chain.

Intelligent-Expresser: takes this causal chain
as input, figures out from its general
rules of expression what is important to
say so that the questioner will a) under-
stand the answer and b) get the kind of
information that people are generally
interested in, and outputs to a natural
language generator, some intermediate
form from which it could generate an
answer.

.

72

For example, my program would produce
answer4e above by the following process.
First it would find Susan buying the book in
the database and then follow the chain, in
this case, to where it finds that she did well
on her exam. This whole part of the chain is
passed to the expression mechanism which
would notices that studying the book and
doing well on her exam were important parts
of the answer. In this case, the Intelligent-
Expresser uses the general conversational
rule of not informing someone of something
they already know. Having the book and
reading the book are thereby eliminated
because they are stored in the data base as
normative purposes for buying and for hav-
ing a book, respectively.

This approach also allows one to gen-
erate answers that were otherwke prob-
lematic to represent in a conceptual form.
For example, the simple question:

Q5: Did Susan go to the bookstore?
A5 Yes, she rode her bike there.

The answer is obviously yes, because this
event appears in the database. However,
‘yes’ is something that is difficult to
represent in conceptual form. ‘Yes’ is not
really a concept but rather a word that is
almost exclusively used in a conversation.
The answer formation part of my system
looks in the database for concepts similar to
going to the bookstore. Realizing that riding
to the bookstore was similar to going there it
would answer:

(ride
(actor (person (object susanl)))
(object (bicycle (object bicycle 1)))
(destination (bookstore(object bookstorel]

This part of the chain and the context in
which the question was asked is passed to
the answer expression part of the program,
that would a) see that this is a simple verify
question, b) realize that the concept to be
verified was in fact found in the database in
a slightly different form and c) figure out
that it should answer ‘yes’ plus some inter-
mediate form that represents that it should
include the ride concept.

This same method can be extended to
other types of verify questions. For exam-
ple

Q6: Did Susan ride her bike to the bookstore
so that she could do well on her math
test?

A6: Yes, she bought a book at the bookstore
which she used to study for her exam.

Q7: Did Susan buy the math book so that she
could do well on her math test?

A7: Yes, she used it to study for her exam.

The answer formation part looks to see if a
chain with the starting place of ‘riding to the
bookstore’ and ends with ‘doing well on her
math test’, exists in the database. This
whole chain does exist and includes, she
rode to the bookstore was a plan for being at
the bookstore, which was a precondition for
buying a book, which was a plan for having
the book which was a step of reading the
book, which was a plan for knowing the math
material, which was a goal from doing well on
her exam.

The answer expression part of the pro-
gram gets this chain, realizes it should
answer ‘yes’ and decides how much in addi-
tion to the ‘yes’ it would need to include in
the answer. Notice how in Answer4 it had to
include more information from this chain
than it had to include in Answer5

5. Conclusion
This intelligent expression part of the

program is not something that is designed to
be used exclusively in question-answering
but is a system that would be valuable in any
context where an interactive natural
language system is important. It differs
from a generator in that it does not merely
generate something from a conceptual form
into English, but rather decides what kinds
of things are important to be said, which is
then passed to a generator. Hopefully, this
kind of system could be expanded to work on
other conversational tasks as well.

References

[l] Lehnert, W., 1978. The Process of Ques-
tion Answering: A Computer Simulation
of Cognition. Hillsdale, N. J. Lawrence
Erlbaum Associates, Inc.

[2] Wilensky, R. 1978.
Goal-Based Stdtis.

Understanding
Technical Report

140, Computer Science Department, Yale
University, New Haven, CT.

73

[3] Wilensky, R. and Arens, Y. 1980 PHRAN -
a Knowledge Based Approach to Natural
Language Analysis. University of Cali-
fornia at Berkeley. Electronic Research
Laboratory Memorandum No. UCB /ERL
M80/34.

[4] Wilensky, R. 1981. Meta-planning:
Representing and using knowledge
about planning in problem solving and
natural language understanding. Cog-
nitive Science, Vol. 5, No. 3. 198 1.

[5] Winograd, T. 1972 Understanding
Natural Language. New York. Academic
Press.

74

