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Abstract 
This paper describes a question answer- 

ing program which divides question answer- 
ing into two separate processes: answer for- 
mation and answer expression. Rather than 
gathering possible answers and choosing the 
best among them, the program accesses the 
database and finds all components of possi- 
ble answers, e.g. a causal chain, and then 
passes this information to an expression pro- 
gram which formulates a proper answer. 

1. Introduction 
I have developed a question answering 

program that will answer questions about 
simple stories. In my program, question- 
answering is divided up into two separate 
processes: 1) answer formation and 2) 
answer expression. The program first looks 
down a causal chain which is formed by the 
story-understanding program and figures 
out in what part of the chain the answer lies. 
The answer can also be a subset of the chain, 
sometimes a quite long one. The second 
part of the program takes this long chain 
and decides what things are important to 
express to the questioner. This answer 
expresser uses general rules of expression to 
figure out what it needs to include to make 
the answer understandable, informative and 
interesting. 

This solution is different from other 
question-answering algorithms (e.g. Wino- 
grad 19’72, Lehnert 1977) which view ques- 
tion answering as one process. These pro- 
grams gather possible answers, and then 
choose the ‘best’ answer from among them. 

*This research was sponsored in part by the Office of 
Naval Research under contract N00014-80-C-0732 and 
the National Science Foundation under grant MCS79- 
06543. 

My system first gets the chain which I con- 
sider to be the answer to the question, and 
then figures out which parts of the chain 
should be generated into English as the 
answer. The advantage of my approach is 
that it allows one to treat the answer as one 
entity and use the answer expression 
mechanism to express what people are 
interested in. The resulting answers are 
generally more informative and conversa- 
tionally appropriate than those generated by 
other algorithms. 

The program works in conjunction with 
FAUSTUS, a story understanding program 
that specialises in goal-based stories. [2,3] 
After a story is initially ‘read’ by PHRAN, a 
parser, [ 11 it is then passed to this PAMELA 
and ‘understood’. The question answering 
program is passed a database which consists 
of events, inferences, and most importantly, 
for my purpose, causal chains which instan- 
tiate events in the story as steps of particu- 
lar plans and plans for particular goals. Con- 
tained in this causal chain is the actual 
‘understanding’ of the sequence of events in 
the story, what caused what, and what goal 
actors had in mind when they performed a 
particular act or plan. After a question is 
asked, this question is parsed by the same 
parser that parsed the story, and then the 
answer is formulated by looking at the data- 
base. Finally, the answer is passed to the 
answer expresser which sends the answer to 
a natural language generator. 
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2. Program Examples** 
The following examples were processed 

by my program. 

Story: Susan saved her money from her 
allowance. One day she rode her bike to 
the bookstore and bought the book that 
her teacher had recommended. Susan 
did very well on her math test the follow- 
ing week. 

Ql: 
Al: 

Why did Susan buy the book? 
So that she could study from it and do 
well on her exam. 

Q2: 

A2: 

How did Susan do so well on her math 
exam? 
She bought a book that her teacher had 
recommended and studied from it. 

Q3: How did she get the book? 
A3: By riding her bike to the bookstore. 

3. F’inding the Best Answer 

A difficult and important part of answer- 
ing a question is not in tiding an answer to 
the question, but finding the best answer. In 
a database of causal chains, if one can find 
an event in the database then there may be 
many possible answers to a given question. 
Consider the previous story. 

If we ask: 

Q4: Why did Susan buy the book? 

The following answers are obtained by step- 
ping down the causal chain. 

A4a:Because she wanted to have it. 
A4b:Because she wanted to read it. 
A4c:Because she wanted to know math. 
A4d:Because she wanted to do well on her 

exam. 

Note that the items nearer the top of the 
goal structure constitute better answers 
although the best answer would be some- 
thing like: 

**At this point the program is not connected to the 
natural language parser at Berkeley called PHRA.Y or 
the generator PHRED (Wilensky and Arens, 1980). 
The questions and answers are therefore translated 
from the conceptual form I now use. 

A4e:So that she could study it and do well on 
her math test. 

However, in a more complicated story, 
merely looking to the end of chain might not 
work quite as well. For example, if in the 
previous story we added: 

She put the book on her head and 
learned the material through osmosis. 
Susan did very well on her math test the 
following week. 

Clearly, Answer4d is no longer a good 
answer. 

One possible solution is including only 
‘important’ answers. Important inferences 
might include abnormal plans, natural disas- 
ters, etc. The problem with this was that 
even though these ‘important’ inferences 
definitely should be included in the answer, 
one should not necessarily stop at that point 
in the chain and say that this is the answer. 
For example, just stopping at ‘important’ 
events in response to question4 one would 
get: 

A4f:So that she could put it put it on her 
head. 

A4g:So that she could learn by osmosis. 

which is less desirable than: 
A4h:So that she could learn from the math 

book by osmosis and do well on her 
exam. 

4. Dividing up the Question Answering 
Process 

My program is able to find these better 
answers because of the separation of finding 
the answer (the subset of the chain) from 
expressing the answer to the user. Instead I 
use the two programs: 

Answer-Formulator: looks down a causal 
chain, figures out where what parts of 
the chain are relevant to an answer and 
returns a chain. 

Intelligent-Expresser: takes this causal chain 
as input, figures out from its general 
rules of expression what is important to 
say so that the questioner will a) under- 
stand the answer and b) get the kind of 
information that people are generally 
interested in, and outputs to a natural 
language generator, some intermediate 
form from which it could generate an 
answer. 

. 
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For example, my program would produce 
answer4e above by the following process. 
First it would find Susan buying the book in 
the database and then follow the chain, in 
this case, to where it finds that she did well 
on her exam. This whole part of the chain is 
passed to the expression mechanism which 
would notices that studying the book and 
doing well on her exam were important parts 
of the answer. In this case, the Intelligent- 
Expresser uses the general conversational 
rule of not informing someone of something 
they already know. Having the book and 
reading the book are thereby eliminated 
because they are stored in the data base as 
normative purposes for buying and for hav- 
ing a book, respectively. 

This approach also allows one to gen- 
erate answers that were otherwke prob- 
lematic to represent in a conceptual form. 
For example, the simple question: 

Q5: Did Susan go to the bookstore? 
A5 Yes, she rode her bike there. 

The answer is obviously yes, because this 
event appears in the database. However, 
‘yes’ is something that is difficult to 
represent in conceptual form. ‘Yes’ is not 
really a concept but rather a word that is 
almost exclusively used in a conversation. 
The answer formation part of my system 
looks in the database for concepts similar to 
going to the bookstore. Realizing that riding 
to the bookstore was similar to going there it 
would answer: 

(ride 
(actor (person (object susanl))) 
(object (bicycle (object bicycle 1))) 
(destination (bookstore(object bookstorel] 

This part of the chain and the context in 
which the question was asked is passed to 
the answer expression part of the program, 
that would a) see that this is a simple verify 
question, b) realize that the concept to be 
verified was in fact found in the database in 
a slightly different form and c) figure out 
that it should answer ‘yes’ plus some inter- 
mediate form that represents that it should 
include the ride concept. 

This same method can be extended to 
other types of verify questions. For exam- 
ple 

Q6: Did Susan ride her bike to the bookstore 
so that she could do well on her math 
test? 

A6: Yes, she bought a book at the bookstore 
which she used to study for her exam. 

Q7: Did Susan buy the math book so that she 
could do well on her math test? 

A7: Yes, she used it to study for her exam. 

The answer formation part looks to see if a 
chain with the starting place of ‘riding to the 
bookstore’ and ends with ‘doing well on her 
math test’, exists in the database. This 
whole chain does exist and includes, she 
rode to the bookstore was a plan for being at 
the bookstore, which was a precondition for 
buying a book, which was a plan for having 
the book which was a step of reading the 
book, which was a plan for knowing the math 
material, which was a goal from doing well on 
her exam. 

The answer expression part of the pro- 
gram gets this chain, realizes it should 
answer ‘yes’ and decides how much in addi- 
tion to the ‘yes’ it would need to include in 
the answer. Notice how in Answer4 it had to 
include more information from this chain 
than it had to include in Answer5 

5. Conclusion 
This intelligent expression part of the 

program is not something that is designed to 
be used exclusively in question-answering 
but is a system that would be valuable in any 
context where an interactive natural 
language system is important. It differs 
from a generator in that it does not merely 
generate something from a conceptual form 
into English, but rather decides what kinds 
of things are important to be said, which is 
then passed to a generator. Hopefully, this 
kind of system could be expanded to work on 
other conversational tasks as well. 

References 

[l] Lehnert, W., 1978. The Process of Ques- 
tion Answering: A Computer Simulation 
of Cognition. Hillsdale, N. J. Lawrence 
Erlbaum Associates, Inc. 

[2] Wilensky, R. 1978. 
Goal-Based Stdtis. 

Understanding 
Technical Report 

140, Computer Science Department, Yale 
University, New Haven, CT. 

73 



[3] Wilensky, R. and Arens, Y. 1980 PHRAN - 
a Knowledge Based Approach to Natural 
Language Analysis. University of Cali- 
fornia at Berkeley. Electronic Research 
Laboratory Memorandum No. UCB /ERL 
M80/34. 

[4] Wilensky, R. 1981. Meta-planning: 
Representing and using knowledge 
about planning in problem solving and 
natural language understanding. Cog- 
nitive Science, Vol. 5, No. 3. 198 1. 

[5] Winograd, T. 1972 Understanding 
Natural Language. New York. Academic 
Press. 

74 


