
Taking to UNIX in English:

An Overview of UC*

Robert W~Lemky

Division of Computer Science
Department of EECS

University of California, Berkeley
Berkeley, Ca. 94720

1. Introduction

UC (UNIX Consultant) is an intelligent natural
language interface that allows naive users to com-
municate with the UNIX** operating system in ordi-
nary English. UC is currently capable of handling
simple dialogues, of which the following is representa-
tive:

Dialogue 1

User:How can I delete a file?

UC: typing ‘rm filename’ will remove the file with
name l%ename from your current directory

User:Move a fY.le?

UC: typing ‘mv filename newfilename’ will move the
file with name filename to a file with name
newfilename

User:How might a f3e be created in UNIX?

UC: the best way to create a new file is to use the
editor, i.e.- ‘ex filename’.

User:A directory?

UC: typing ‘mkdir dirname’ will create the directory
‘dirname’ in the current directory.

User:How can I find out how full the disk is?

UC: typing ‘df’ will tell you how full the disk is.

Users:How should I find out who is on the system?

UC: typing ‘who’ will tell you who is connected to
UNIX.

UC is able to handle most variations of such requests.
For example, asking “What is a way to remove a file?”
or “How does one delete a file?” will return the same
answer as is given above to “How can I delete a file?”

In addition, UC can handle some requests that
require greater awareness of the context generated
by a dialogue. For example, consider the following
dialogue with UC:

*
This research was sponsored in part by the Office
of Naval Research under contract N00014-80-C-0732
and the National Science Foundation under Grant
MCS79-06543.

**
UNIX is trademark of Bell Laboratories

Dialogue 2

User:How do I print the file fetch.1 on the line printer?

UC: To print the file fetch.1 on the line printer type
‘lpr fetch.1’.

User:Has the file fetch.1 been printed yet?

UC: The file fetch.1 is in the line printer queue.

User:How can I cancel it?

UC: To remove the file fetch.1 from the line printer
queue you must type ‘lprm fetch.1’.

In this example, UC determines that ‘it’ refers to the
request to print a file rather than some more
recent!y issued command, because the immmedi-
ately preceding dialogue has brought this request
into focus.

UC is also being extended to handle requests requir-
ing more complex reasoning to formulate an intelli-
gent response.

2. The Problem Domain

The problem of naive user communication with an
operating system provides an appealing domain for
study and application of a number of Artificial Intelli-
gence techniques. The domain is complex enough to
provide substantial sub-problems, but not so
unbounded that a useful working system must pos-
sess a hopelessly large repertoire of howledge. The
task involves a quite realistic use of natural language,
namely, participating in a directed dialogue.

In addition, UC provides an application of natural
language processing that people would actually be
willing to use. Some common uses for natural
language processing, for example, natural language
front ends to data bases, probably do not have this
property. Once a user has learned a somewhat more
cryptic query language, he is apt to prefer it over
natural language as it is likely to provide a simpler
and less verbose mode of expression for the majority
of queries.

In contrast, a naive user of a system would probably
be willing to converse in English with a machine,
since the alternatives are apt to be worse. Manuals
and on-line help facilities are only marginally useful -
a user usually needs to be fairly sophisticated in
order to issue the right help command, and then
these are successful only a fraction of the time. Peo-
ple knowledgeable enough to be helpful are not

103

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

always
offer.

available and usually do not have the time to

In addition, the domain is “soft” in the sense that a
system that did not work all the time is still likely to
be useful. For example, if UC failed to give the
desired answer, the user is no worse of? than he would
be otherwise, and still has the normal repertoire of
options at his disposal. Of course, if UC does provide a
useful answer, the user will benefit from it. Thus UC
is an AI system that will be useful even as it expands
to a larger portion of its domain.

Lastly, the problem integrates a number of areas of
concern for artificial intelligence, including natural
language understanding, natural language produc-
tion, planning and problem solving.

3. The Structure of UC

UC runs on a VAXll/780 and is programmed in FRANZ
LISP and in PEARL, an AI language developed at
Berkeley (Deering et al., 1981). Although UC is itself
a new system, it is built out of a number of com-
ponents, some of which have been under development
at Berkeley for some time. The natural language
understanding component consists of an extended
version of PHRAN (PHRasal ANalyzer), original pro-
grammed by Yigal Arens on a DEClO and moved to
the VAX by Margaret Butler. The natural language
production is to be done by PHRED (PHRasal English
Diction), PHRAN’ s sibling language processing pro-
gram, but as of this writing PHRED has not been
moved to the VAX. These programs are described in
Wilensky (198 lb).

PHRAN reads sentences in English and produces
representations that denote their meanings. One of
the primary design goals of PHRAN is that it be easily
extensible to new linguistic forms and domains. This
is particularly important for implementing UC, as we
expect to be continually extending the system’s
scope. Applying PHRAJJ to the domain of requests
about UNIX was as much a test of PIiRAN’s versatility
as it was a useful application. In fact, most of the
forms used by UC are new to PHRAN, and were added
to PHRAN’s knowledge base of English by David Chin.
The approximate amount of effort to extend PHRAN
to handle one of these new forms, once the represen-
tation used to denote the meaning of the form has
been agreed upon, is currently on the order of a few
minutes. Right now, the PHRAN component of UC can
understand requests about 25 substantially different
topics, each in many different linguistic formats.

One of the extensions to PHRAN being realized in UC
is a mechanism to handle some forms of ellipsis,
implemented by Lisa Rau. This mechanism handles
both intra-sentential forms, such as “I want to delete
the small file and the large”, and inter-sentence
forms, as in “How do I delete a file? A directory?”
Ellipsis is handled by first letting the basic PHRAN
analysis mechanism produce what it can from the
input. PHRAN is a pattern-based system whose pat-
terns map various levels of linguistic structures into
meaning representations. Thus the process of under-
standing an utterance leaves a history of the patterns
used to arrive at that understaning. If the result of
this process is incomplete (e. g., generally something
that is not a sentence where a sentence is expected),

then previously used PHRAN patterns are examined
to see if they match the patterns used to understand
the fragment. If so, then the words of the fragment
are substituted for the words of the previous sen-
tence that correspond to the common pattern. The
resulting linguistic unit is then re-analyzed by
PHRAN.

3.1. Context in UC

Another extension to PHRAN involves the implemen-
tation of a context mechanism by Yigal Arens. This is
essentially an activation-based memory mechanism
used by UC to keep track of the focus of the
discourse (cf. Grosz 1977), handle some aspects of
reference, and help in word disambiguation. When a
concept is encountered by PHRAN, it is given a level

of activation; concepts stored in memory as being
associated with this concept are also given a level of
activation. AS processing proceeds, the activation
levels are manipulated according to an algorithm
described in Arens (1982).

For example, in Dialogue 2 above, the question
preceeding the cancellation command brings back
into focus the previous request to print the file. That
is, asking this question increases the activation level
of the memory of that request. Then when the last
request is issued, UC will try to interpret ‘it’ in this
new context. Since the request to print the file is
now more highly activated than any intervening
request, UC will determine that ‘it’ refers to the print
request even though this request is not the most
recent.

3.2. Processing Reqyests in UC

After a meaning representation for a sentence has
been produced by PHRAN, a reasoning process comes
into play. For the simplest requests, UC simply uses
the meaning representation of the request as a query
into an associative knowledge base of facts to see if
there is a stored answer. This knowledge base, and in
fact, much of UC, is implemented in PEARL (Package
for Efficient Access to Representations in LISP).
PEARL is an AI language developed with flexibility and
time and space efficiency in mind. By using PEARL, it
is possible to assert new facts into the knowledge
base and have UC use these facts quickly in its vari-
ous response formation processes. PEARL is
described in more detail in Deering, Faletti, and
Wilensky (198 1, 1982).

For example, the following is a simplified version of
the PEARL representation of the fact that using the
‘rm’ command is a way to delete a file:

(planfor (concept
(causation (antecedent (do (actor ?X)))

(consequent
(state-change (actor ?F/is-file)

(state-name physical-state)
(from 10)
(to -1w>>>

(is (use (actor ?X) (command (name rm) (arg ?F))

Questions of the form “How can I delete a file?” are
analyzed into a form similar to this, but with the “is”
slot filled with a variable. PEARL’s retrieval facility

finds the stored fact based on this similar structure;
it can then be used to supply an answer (right now,
canned text associated with these representations is
used because the PHRED generator does not yet work
on the VAX).

4. Extending UC to Process More Complex Requests

Most requests require more complex processing, how-
ever. For these situations, UC uses a reasoning com-
ponent based on the PANDORA planning mechanism
(Wilensky 1981a). PANDORA, implemented by Joe
Faletti, is based on a model of planning in which goal
detection and goal interactions play a prominent
role. For example, consider the indirect request: “I
need some more disk space.” A literal response to
this remark might be “Type ‘r-m *‘I’, which is most
likely not what the user had in mind.

The problem with this response, of course, is that it
violates an unstated user goal, namely, that the user
wants to preserve what he has already put on the
disk. An intelligent consultant must be able to infer
such goals, and reason about the interactions of such
goals with those explicit in the user’s request. In this
example, an implicit goal (preserving a file) may
conflict with the stated goal (getting some more
space), and this possibility must be explored and
dealt with.

Although it was originally constructed to be an auto-
nomous planner, PANDORA’s architecture is well
suited for this sort of reasoning. PANDORA first tries
to apply a stored plan to a given goal. It then simu-
lates the situation that may result from the current
state of the world using a mechanism called a Projec-
tor. In the above example, the simulation will reveal,
among other things, that some liles will get des-
troyed, as this is a consequence of the ‘x-m’ com-
mand .

Another of PANDORA’s basic components is called the
Goal Detector. This mechanism determines the goals
the planner should have in a given situation. The goal
detector is essentially a collection of demons that
respond to changes in the environment, including the
simulated environment created by the projector. In
this example, when the simulated future reveals the
possible destruction of a file, the goal detector will
react to this possibility by inferring the goal of
preserving this flle.

Since this preservation goal arises from a plan of the

user’s, PANDORA also infers that there may be a goal
conflict between this goal and the goal underlying the
user’s original request. PANDORA makes this infer-
ence by considering a goal giving rise to a preserva-
tion goal as another situation in which to detect a
goal (namely, the goal of resolving the goal conflict).
Then a plan for this “resolve-goal-conflict” goal can be
sought by successive application of the whole plan-
ning process.

is, a goal whose successful execution will result in a
better plan for other goals. This formulation allows
the goal detection mechanism to be used to solve the
problem of goal confict detection, and the normal
planning process to flnd a resolution to such a prob-
lem. More detail on meta-planning and the associ-
ated algorithms is given in Wilensky (1981a).

In the example at hand, the presence of a goal
conflict is only a possibility, as the user may well have
some flies that he doesn’t need. A general strategy in
such situations is to determine whether the possibil-
ity actually exists. This would lead to the generation
of the question “Do you have any files that you do not
need?” If the user’s response is negative, then the
conflict does in fact exist, and a conflict resolution
strategy must be employed.

A strategy that is applicable to all conflicts based on
a shortage of resources is to try obtaining more of
the scarce resource. In the example above, the
scarce resource is disk space. PANDORA would then
create a new goal of obtaining more disk space.
Since a stored plan for this goal is to ask the systems
manager for more room, UC can respond with the
advice that the user request more room from the sys-
tems manager. An implementation of PANDORA and a
fuller explanation of its role in UC is found in Faletti
(1982).

Of course, it is possible to store requesting more
room as a plan for the original goal, and by-pass all
this complex reasoning. The problem with such a
solution is that it would preclude the possibility of
informing the user that he could delete a file that he
doesn’t need. Alternatively, we could make a more
complex canned plan that checks for just this situa-
tion. That is, the stored plan would be to delete a file
one doesn’t want, and, if this fails, then to request
more space. The problem here is that it would be
necessary to include all possible interactions in the
canned plan. While it may be desirable to include
some of these some of the time, to deal with unantici-
pated interactions, a more general reasoning
mechanism is required. For example, if the systems
manager is unavailable and the user’s desire for the
disk space is great enough, deleting a file may still be
a reasonable solution; however, it is unlikely that
such a possibility would be anticipated by the canned
plan.

References

Arens, Y. 1982. The Context Model: Language
Understanding in Context. In the Proceedings of
the Fourth Annual Conference of the Cognitive
Science Society. Ann Arbor, MI. August 1982.

Deering, M.. Faletti, J., and Wilensky, R. 1981.
PEARL: An EfIicient Language for Artificial Intel-
ligence Programming. In the Proceedings of the
Seventh International Joint Conference on
Artificial Intelligence. Vancouver, British Colum-
bia. August, 1981.

This algorithm makes use of a metaplanning
representation for planning strategies. The goal of
resolving a goal conflict is actually a meta-goal, that

Deering, M., Faletti, J., and Wilensky, R. 1982.
The PEARL Users Manual. Berkeley Electronic
Research Laboratory Memorandum Ito.
UCB/ERL/M82/19. March, 1982.

Faletti, J. 1982. PAKDORA -- A Program for Doing
Commonsense Planning in Complex Situations.
In the Proceedings of the National Conference
on Artificial Intelligence, Pittsburgh, PA.
August, 1982.

Grosz, B. J. 1977. The Representation and Use of
Focus in a System for Understanding Dialogs.
Proceedings of the fifth International Joint
Conference on Artiflcixz! intelligence. Carnegie-
Mellon University, Pittsburgh, PA.

Wilensky, R. 1981a. Meta-planning: Representing
and using knowledge about planning in prob-
lem solving and natural language understand-
ing. Cognitive Science, Vol. 5, No. 3. 1981.

Wilensky, R. 1981(b). A Knowledge-based
Approach to Natural Language Processing: A Pro-
gress Report. In the Froceedtngs of the Seventh
bLterrLation& Joint conference on Artificial
Intelligence. Vancouver, British Columbia.
August, 1981.

106

