
A SEARCH PROCEDURE FOR
PERFECT INFORMATION GAMES OF CHANCE:

ITS FORMULATION AND ANALYSIS

Bruce W. Ballard
Dept. of Computer Science

Duke Universitv
Durham, N.C. 27306

ABSTRACT

An algorithm i s developed for
searching the trees of "perfect
information" games involving chance
events. Many dice games (e.g. backgammon,
craps, and monopoly and similar board
games), and some card games (e.g. casino
blackjack), have this property. For depth
3 trees, empirical observation reveals a
search reduction of more than 50 percent,
while closed-form analysis reveals a
best-case complexity of O(N**2)

a substantial savings over
This

represents the
O(N**3) behavior of the "obvious" search
strategy.

I INTRODUCTION

Many games involving chance events,
such as the roll of dice or the drawinq of
playing cards, can be
introducing

modeled by
"probability" nodes into

standard m ininax trees. We use the
symbols + and - to denote maximizing and
minimizing nodes, respectively, and *
(pronounced "star") to denote a
probability node. We define the value of
a * node as the weighted average of the
values of its successors, which may occur
with differing probabilities. We shall
develop and evaluate the performance of an
alqorithm to search *-minimax trees
efficiently. In this paper, we assume
that all descendents of a * node are
equally likely. The algorithm we present
can be extended, in a direct way, to the
more qeneral case.

For the most part, *-minimax trees,
as we shall call them, retain the
properties of ordinary minimax trees. In
particular, they pertain to 2-oerson, O-
sum, perfect information games. BY
"perfect information" we mean that neither

This research has been partially supported
by AFOSR, Air Force Command, AFOSR Sl-
0221. The author wishes to express
appreciation to Dr. Donald Loveland and
Tom Truscott for discussing portions of an
earlier draft of this paper.

player conceals information about the
current state of the 9me I or possible
future states, that could be useful to the
other player. Many dice qames (-7.
craps, backqammon, and monopoly and
similar board games) satisfy these
criteria, a4 do some card games (e.g.
casino blackjack).

Figure 1 gives an example *-minimax
tree. Backed-up values for non-terminal
nodes are shown in oarentheses. The value
of the * node has been computed as
(2 - 4) / 2 = -1.

+ (3)
/ \

/ \
/ \

- (3) * (-1)
/ \ 1 \

/ \ / \
4 3 -4

/ - l"'
/ \

2 3

Figure 1 - A Sample *-Minimax Tree

II THE *-MINIMAX SEARCH PROBLEM

In searching *-minimax trees, we want
to retain the alpha-beta "cutoff" power of
ordinary minimax trees. However, the
presence of * nodes provides opportunities
for additional forms of cutoffs.
Recognizing that lower and upper bounds on
the value of a * node can be derived by
exploring one or more of its children, we
have devised an alqorithm which can reduce
search complexity by more than 50 percent
with random ordering of successor nodes,
and by an order of maqnitude with optimal
ordering.

As an example of a pass ibl-e " *
cutoff", suppose the (leaf) values of a
particular tree are inteqers between 0 and
10, inclusive, and that a * node with 4
equally likely successors has had 2 of its
successors searched. This situation is
shown in Fiqure 2.

111

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

* <----- 2 <= val <= 7 Starl(board, alpha, beta)

local A, B, i, v, vsum, AX, BX, s[l;

Figure 2 - Interim Bounds on a * Node

Knowing the values of these 2 children, we
can say that the smallest possible value
for the * node is (5 + 3 + 0 + 0) / 4, or
2. Similarly, the greatest possible value
of the * node is (5 + 3 + 10 + 10) / 4, or
7. Thus, a cutoff can occur if the alpha
value passed to * is >= 7, or if the beta
value is <= 2. We shall formulate a
search strategy to take advantage of this
form of potential cutoff. In addition,
our strategy will compute new alpha and
beta values for use below * nodes.

III AN ALGORITHM FOR *-MINIMAX TREES -

Let L and U denote lower and upper
bounds on all possible game (leaf) values.
Let Vl, V2, VN be the values of the N
successors of a * node, whose i-th
successor is about to be searched. After
returning from the i-th node, a cutoff
will occur if

(vl+ . ..+Vi-1) + Vi + U*(N - i)
<= alpha

N

or if

(vl+ . ..+Vi-1) + Vi + L*(N - i)
>= beta

N

Alpha and beta values for the i-th
successor are given by

Ai = N*alpha - (Vl+...+Vi-1) - U*(N - i)
Bi = N*beta - (Vl+...+Vi-1) - L*(N - i)

where "alpha" and "beta" are the alpha-
beta values of the present * node. These
equations suggest that A and B be
initialized by

Al =N* (alpha - U) + U
Bl = N * (beta -L)+L

and updated by

An+1 = An + U - Vn
Bn+l = Bn + L - Vn

The following Star1 procedure implements
this strategy, making use of (1) a Term
procedure, to evaluate terminal positions;
(2) an Eva1 procedure which, depending on
which player is to move next, invokes
either Max or Min; and (3) a procedure to
generate the successors of a node.

determine the N successors sl,s2,...,sN
if (N == 0)

return(Term(board));

A = N * (alpha - U) + U;
B = N * (beta - L) + L;
vsum = 0;
for (i=l; i<=N; i++) f

AX = max(A, L);
BX = min(B, U);
V = Eval(s[il, AX, BX);
if (v <= A)

return(alpha);
if (v >= B)

return(beta);
vsum = vsum + v;
A= A+U-v;

1 B
=B+L-v;

return(vsum / N);
1

An example of the way in which *
nodes use and create new alpha-beta values
is suggested by the partially searched *-
minimax tree given in Figure 3.

+
/ \

4
/-\

5
z/j\

<----------- <4 I 5'

. . .
I

/-\
<----------- <o , lo>

3 * <------- <O I 3'
/ \

-3 . . .
I
+ <------- x-7 , lo>

Figure 3 - A Partially Searched
*-Minimax Tree

(assuming -10 <= Leaf Values <= +lO)

IV AN "IMPROVED" ALGORITHM -

In typical *-minimax games, where
players take turns in making moves, a
given * node has either all + successors
or all - successors. Consider a
particular * node whose succesors are all
- nodes. If this node is worse than a
previously searched * node, a preliminary
"probing" of just one child of each - node
can substantially reduce the number of
nodes explored before a cutoff occurs. If
Wi denotes the value of some child of the
i-th - node, and Vi denotes the (true)
value of the i-th - node, we will obtain a
cutoff below the * node if

112

(vl+ . ..+Vi-l)+Vi+(Wi+l+...+WN)

which yields an Ai value of

Ai = alpha*N-(Vl+...+Vi-l)-(Wi+l+...+WN)

From this formlIla we develop a modified
Star2Min procedure (given in Sallard[82])
for * nodes with all - children. A
similar Star2Max procedure applies to *
nodes having all + children.

V ANALYSIS OF *-MINIMAX ALGORITHMS -

Most analyses of ordinary alpha-beta
have considered so-called "complete" N-ary
trees, where all leaves occur at a fixed
depth D and all non-terminal nodes have
exactly N successors. In most of the *-
minimax games we have studied, chance
events are use:1 primarily to determine a
player's set of leqal moves. We therefore
?lefine the class of * -complete N-ary trees
by inserting a *

-A-
node above each node of a

complete N-ary tree, and giving these *
nodes N-l additional successor nodes of
the same type. The leftmost part of a *-
complete 2-ply binary tree appears in
Figure 4. We have investigated the
efficiency of Star1 and Star2 on depth 3
*-complete N-ary trees, since they
correspond to trees allowing the simplest
cutoffs of standard alpha-beta.

*
/ \

/ \
+ +

/ \
/ \

* *
/ \

/ \

/-\
/ \

Figure 4 - The Leftmost Portion of
a 2-Ply *-Complete Binary Tree

As an attempt to capture the sorts of
dependencies that occur in practice, we
follow Fuller et a1[731 by assigning
distinct, uniformly spaced values to the
arcs below a node, and defining leaf
values as the sum of the arc values on the
path to it from the root. In Ballard[82]
we derive the following:

Result 1: The asymptotic best-case
behavior of algorithm Star1 on
the + node of a *-complete 2-ply
N-ary tree is to exainine
approximately 0.7211 N**3 of the
N**3 leaves beneath it.

Result 2: The asymptotic best-case
behavior of algorithm Star2 on
the + node of a *-complete 2-ply
N-ary tree ' to examine
approximately lls7211 N**2 of the
N**3 leaves beneath it.

The latter result is encouraging because,
like the 0 (N**2) best case alpha-beta
result for depth 3 trees, it shows that a
wise algorithm can hope to reduce seatch
complexity by a factor of N. For the most
part, we achieved this reduction without
increasing the coin-olexity of the
algorithm, its overhead, or the additional
space needed. Table 1 indicates search
savings for various values of N. Note the
rapid convergence of Star1 toward the
72.11 percent region predicted by the
asymptotic figure qiven above.

Since average-case analysis is much
more difficult than best-case analysis, we
decided to investigate expected-case
performance by empirical ~t?d;ls. iJail?q the
UNIX pseudo-random number qenerator, we
generated and qathered statistics on 1000
*-complete trees for each of several
branching factors. Table 2 summarizes the
results of Star1 nerformance. It can be
seen that the average case savings is
about 21 percent, or rouqhly 2/3 of the
best-case savinqs (given above). Table 3
summarizes the results of Star2
performance. An interestinq result was
that roughl\l half the * nodes for which a
cutoff occurred were cut off during the
probing phase. Also, we see that for a
branching factor greater than about 20,
Star2 looks at fewer than half the leaves
explored by Starl.

VI INCORPORATING *-MINIMAX SEARCH
INTO A GAME-PLAYING PROGRAY --

In programming actual minimax games,
adjustments are often made to a pure
alpha-beta search because of the
overwhelming size of most search trees.
In particular, a static evaluation
function is generally used to rank
successor nodes in what appears (before
searchinq) to be best-to-worst order,
hopinq to assure early cutoffs; a depth -
bound is often maintained in some form to
preclude searching prohibitively deer,
nodes; forward pruning is performed,
meaning that some nodes which look
unpromising are not searched at all; a
transposition table is maintained to avoid
searching the same position more than once
if it appears ' several places
("transpositions") iAnthe search tree; and
so forth. In practice, we would expect
such modifications to be made to the *-
minimax procedures as well, although the
underlying algorithms need not be changed.

113

N 2 4 6 8 10 20 30 40

Procedure Star1
Number 5 40 138 336 670 5560 18990 45320
Percent 62.5 62.5 63.9 65.6 67.0 69.5 70.3 70.8

Procedure Star2
Number 5 25 58 105 166 677 1532 2732
Percent 62.5 39.1 26.9 20.5 16.6 8.5 5.7 4.3

Table 1 - Best-Case Leaf Exploration of Star1 and Star2
for Various *-Complete 2-Ply Trees

N 2 4 6 8 10 20 30 40

Number
Percent

7.1 53.9 178 418 810 6389 21382 50425
88.8 84.1 82.5 81.6 81.1 79.9 79.2 78.8

Table 2 - Average-Case Leaf Exploration of Star1
for Various *-Complete 2-Ply Trees

N

Cutoffs
Probing
Regular

Leaves Seen
Number
Percent

4 6 8 10 20 30 40

1.3 2.0 2.8 3.5 8.1 12.6 17.4
0.7 1.5 2.5 3.5 8.4 13.4 18.3

48 139 293 531 3341 10109 22390
75.4 64.5 57.3 53.1 41.8 37.4 35.0

Table 3 - Average-Case Leaf Exploration of Star2
for Various *-Complete 2-Ply Trees

VII SIJMMARY

We have developed an algorithm For
searching trees pertaining to "perfect
information" games involving chance
events. We analyzed the average-case
complexity of the algorithms empirically,
and observed a savings of more than 50
percent. Closed-form analysis reveals a
best-case complexity of O(N**2), a
substantial savings over the O(N**3)
behavior of the "obvious" search stragety.
Our strategy can be adapted, as ordinary
"alpha-beta" searching has been, to take
advantage of special features of a
particular game.

REFERENCES
Ballard, B. W. A search procedure for *-

minimax trees. Technical Report,
Dept. of Computer Science, Duke
IJniversity, Durham, N.C. (1982).

Baudet, G. M. On the branching factor of
the alpha-beta pruning algorithm.
Artificial Intelliqence 10 (1978)
173-199.

Fuller, S. H., Gaschnig, J. G. and
Gillogly, J. J. An analysis of the
alpha-beta pruning algorithm. Dept.
of Computer Science Report,
Carnegie-Mellon University (July
1973).

Knuth, D. E. and Moore, R. W. An analysis
of alpha-beta pruning. Artifical
Intelliqence 6 (1975) 293-326.

Newborn, M. M. The efficiency of the
alpha-beta search on trees with
branch-dependent terminal node
scores. - Artifical Intelligence 8
(1977) X37-153.

114

