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ABSTRACT 

An algorithm i s developed for 
searching the trees of "perfect 
information" games involving chance 
events. Many dice games (e.g. backgammon, 
craps, and monopoly and similar board 
games), and some card games (e.g. casino 
blackjack), have this property. For depth 
3 trees, empirical observation reveals a 
search reduction of more than 50 percent, 
while closed-form analysis reveals a 
best-case complexity of O(N**2) 

a substantial savings over 
This 

represents the 
O(N**3) behavior of the "obvious" search 
strategy. 

I INTRODUCTION 

Many games involving chance events, 
such as the roll of dice or the drawinq of 
playing cards, can be 
introducing 

modeled by 
"probability" nodes into 

standard m ininax trees. We use the 
symbols + and - to denote maximizing and 
minimizing nodes, respectively, and * 
(pronounced "star") to denote a 
probability node. We define the value of 
a * node as the weighted average of the 
values of its successors, which may occur 
with differing probabilities. We shall 
develop and evaluate the performance of an 
alqorithm to search *-minimax trees 
efficiently. In this paper, we assume 
that all descendents of a * node are 
equally likely. The algorithm we present 
can be extended, in a direct way, to the 
more qeneral case. 

For the most part, *-minimax trees, 
as we shall call them, retain the 
properties of ordinary minimax trees. In 
particular, they pertain to 2-oerson, O- 
sum, perfect information games. BY 
"perfect information" we mean that neither 
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player conceals information about the 
current state of the 9me I or possible 
future states, that could be useful to the 
other player. Many dice qames (-7. 
craps, backqammon, and monopoly and 
similar board games) satisfy these 
criteria, a4 do some card games (e.g. 
casino blackjack). 

Figure 1 gives an example *-minimax 
tree. Backed-up values for non-terminal 
nodes are shown in oarentheses. The value 
of the * node has been computed as 
(2 - 4) / 2 = -1. 
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Figure 1 - A Sample *-Minimax Tree 

II THE *-MINIMAX SEARCH PROBLEM 

In searching *-minimax trees, we want 
to retain the alpha-beta "cutoff" power of 
ordinary minimax trees. However, the 
presence of * nodes provides opportunities 
for additional forms of cutoffs. 
Recognizing that lower and upper bounds on 
the value of a * node can be derived by 
exploring one or more of its children, we 
have devised an alqorithm which can reduce 
search complexity by more than 50 percent 
with random ordering of successor nodes, 
and by an order of maqnitude with optimal 
ordering. 

As an example of a pass ibl-e " * 
cutoff", suppose the (leaf) values of a 
particular tree are inteqers between 0 and 
10, inclusive, and that a * node with 4 
equally likely successors has had 2 of its 
successors searched. This situation is 
shown in Fiqure 2. 
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* <----- 2 <= val <= 7 Starl(board, alpha, beta) 

local A, B, i, v, vsum, AX, BX, s[l; 

Figure 2 - Interim Bounds on a * Node 

Knowing the values of these 2 children, we 
can say that the smallest possible value 
for the * node is (5 + 3 + 0 + 0) / 4, or 
2. Similarly, the greatest possible value 
of the * node is (5 + 3 + 10 + 10) / 4, or 
7. Thus, a cutoff can occur if the alpha 
value passed to * is >= 7, or if the beta 
value is <= 2. We shall formulate a 
search strategy to take advantage of this 
form of potential cutoff. In addition, 
our strategy will compute new alpha and 
beta values for use below * nodes. 

III AN ALGORITHM FOR *-MINIMAX TREES - 

Let L and U denote lower and upper 
bounds on all possible game (leaf) values. 
Let Vl, V2, . . . . VN be the values of the N 
successors of a * node, whose i-th 
successor is about to be searched. After 
returning from the i-th node, a cutoff 
will occur if 

(vl+ . ..+Vi-1) + Vi + U*(N - i) 
<= alpha 

N 

or if 

(vl+ . ..+Vi-1) + Vi + L*(N - i) 
>= beta 

N 

Alpha and beta values for the i-th 
successor are given by 

Ai = N*alpha - (Vl+...+Vi-1) - U*(N - i) 
Bi = N*beta - (Vl+...+Vi-1) - L*(N - i) 

where "alpha" and "beta" are the alpha- 
beta values of the present * node. These 
equations suggest that A and B be 
initialized by 

Al =N* (alpha - U) + U 
Bl = N * (beta -L)+L 

and updated by 

An+1 = An + U - Vn 
Bn+l = Bn + L - Vn 

The following Star1 procedure implements 
this strategy, making use of (1) a Term 
procedure, to evaluate terminal positions; 
(2) an Eva1 procedure which, depending on 
which player is to move next, invokes 
either Max or Min; and (3) a procedure to 
generate the successors of a node. 

determine the N successors sl,s2,...,sN 
if (N == 0) 

return(Term(board)); 

A = N * (alpha - U) + U; 
B = N * (beta - L) + L; 
vsum = 0; 
for (i=l; i<=N; i++) f 

AX = max(A, L); 
BX = min(B, U); 
V = Eval(s[il, AX, BX); 
if (v <= A) 

return(alpha); 
if (v >= B) 

return(beta); 
vsum = vsum + v; 
A= A+U-v; 

1 B 
=B+L-v; 

return(vsum / N); 
1 

An example of the way in which * 
nodes use and create new alpha-beta values 
is suggested by the partially searched *- 
minimax tree given in Figure 3. 
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Figure 3 - A Partially Searched 
*-Minimax Tree 

(assuming -10 <= Leaf Values <= +lO) 

IV AN "IMPROVED" ALGORITHM - 

In typical *-minimax games, where 
players take turns in making moves, a 
given * node has either all + successors 
or all - successors. Consider a 
particular * node whose succesors are all 
- nodes. If this node is worse than a 
previously searched * node, a preliminary 
"probing" of just one child of each - node 
can substantially reduce the number of 
nodes explored before a cutoff occurs. If 
Wi denotes the value of some child of the 
i-th - node, and Vi denotes the (true) 
value of the i-th - node, we will obtain a 
cutoff below the * node if 
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(vl+ . ..+Vi-l)+Vi+(Wi+l+...+WN) 

which yields an Ai value of 

Ai = alpha*N-(Vl+...+Vi-l)-(Wi+l+...+WN) 

From this formlIla we develop a modified 
Star2Min procedure (given in Sallard[82]) 
for * nodes with all - children. A 
similar Star2Max procedure applies to * 
nodes having all + children. 

V ANALYSIS OF *-MINIMAX ALGORITHMS - 

Most analyses of ordinary alpha-beta 
have considered so-called "complete" N-ary 
trees, where all leaves occur at a fixed 
depth D and all non-terminal nodes have 
exactly N successors. In most of the *- 
minimax games we have studied, chance 
events are use:1 primarily to determine a 
player's set of leqal moves. We therefore 
?lefine the class of * -complete N-ary trees 
by inserting a * 

-A- 
node above each node of a 

complete N-ary tree, and giving these * 
nodes N-l additional successor nodes of 
the same type. The leftmost part of a *- 
complete 2-ply binary tree appears in 
Figure 4. We have investigated the 
efficiency of Star1 and Star2 on depth 3 
*-complete N-ary trees, since they 
correspond to trees allowing the simplest 
cutoffs of standard alpha-beta. 
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Figure 4 - The Leftmost Portion of 
a 2-Ply *-Complete Binary Tree 

As an attempt to capture the sorts of 
dependencies that occur in practice, we 
follow Fuller et a1[731 by assigning 
distinct, uniformly spaced values to the 
arcs below a node, and defining leaf 
values as the sum of the arc values on the 
path to it from the root. In Ballard[82] 
we derive the following: 

Result 1: The asymptotic best-case 
behavior of algorithm Star1 on 
the + node of a *-complete 2-ply 
N-ary tree is to exainine 
approximately 0.7211 N**3 of the 
N**3 leaves beneath it. 

Result 2: The asymptotic best-case 
behavior of algorithm Star2 on 
the + node of a *-complete 2-ply 
N-ary tree ' to examine 
approximately lls7211 N**2 of the 
N**3 leaves beneath it. 

The latter result is encouraging because, 
like the 0 (N**2) best case alpha-beta 
result for depth 3 trees, it shows that a 
wise algorithm can hope to reduce seatch 
complexity by a factor of N. For the most 
part, we achieved this reduction without 
increasing the coin-olexity of the 
algorithm, its overhead, or the additional 
space needed. Table 1 indicates search 
savings for various values of N. Note the 
rapid convergence of Star1 toward the 
72.11 percent region predicted by the 
asymptotic figure qiven above. 

Since average-case analysis is much 
more difficult than best-case analysis, we 
decided to investigate expected-case 
performance by empirical ~t?d;ls. iJail?q the 
UNIX pseudo-random number qenerator, we 
generated and qathered statistics on 1000 
*-complete trees for each of several 
branching factors. Table 2 summarizes the 
results of Star1 nerformance. It can be 
seen that the average case savings is 
about 21 percent, or rouqhly 2/3 of the 
best-case savinqs (given above). Table 3 
summarizes the results of Star2 
performance. An interestinq result was 
that roughl\l half the * nodes for which a 
cutoff occurred were cut off during the 
probing phase. Also, we see that for a 
branching factor greater than about 20, 
Star2 looks at fewer than half the leaves 
explored by Starl. 

VI INCORPORATING *-MINIMAX SEARCH 
INTO A GAME-PLAYING PROGRAY -- 

In programming actual minimax games, 
adjustments are often made to a pure 
alpha-beta search because of the 
overwhelming size of most search trees. 
In particular, a static evaluation 
function is generally used to rank 
successor nodes in what appears (before 
searchinq) to be best-to-worst order, 
hopinq to assure early cutoffs; a depth - 
bound is often maintained in some form to 
preclude searching prohibitively deer, 
nodes; forward pruning is performed, 
meaning that some nodes which look 
unpromising are not searched at all; a 
transposition table is maintained to avoid 
searching the same position more than once 
if it appears ' several places 
("transpositions") iAnthe search tree; and 
so forth. In practice, we would expect 
such modifications to be made to the *- 
minimax procedures as well, although the 
underlying algorithms need not be changed. 
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N 2 4 6 8 10 20 30 40 

Procedure Star1 
Number 5 40 138 336 670 5560 18990 45320 
Percent 62.5 62.5 63.9 65.6 67.0 69.5 70.3 70.8 

Procedure Star2 
Number 5 25 58 105 166 677 1532 2732 
Percent 62.5 39.1 26.9 20.5 16.6 8.5 5.7 4.3 

Table 1 - Best-Case Leaf Exploration of Star1 and Star2 
for Various *-Complete 2-Ply Trees 

N 2 4 6 8 10 20 30 40 

Number 
Percent 

7.1 53.9 178 418 810 6389 21382 50425 
88.8 84.1 82.5 81.6 81.1 79.9 79.2 78.8 

Table 2 - Average-Case Leaf Exploration of Star1 
for Various *-Complete 2-Ply Trees 

N 

Cutoffs 
Probing 
Regular 

Leaves Seen 
Number 
Percent 

4 6 8 10 20 30 40 

1.3 2.0 2.8 3.5 8.1 12.6 17.4 
0.7 1.5 2.5 3.5 8.4 13.4 18.3 

48 139 293 531 3341 10109 22390 
75.4 64.5 57.3 53.1 41.8 37.4 35.0 

Table 3 - Average-Case Leaf Exploration of Star2 
for Various *-Complete 2-Ply Trees 

VII SIJMMARY 

We have developed an algorithm For 
searching trees pertaining to "perfect 
information" games involving chance 
events. We analyzed the average-case 
complexity of the algorithms empirically, 
and observed a savings of more than 50 
percent. Closed-form analysis reveals a 
best-case complexity of O(N**2), a 
substantial savings over the O(N**3) 
behavior of the "obvious" search stragety. 
Our strategy can be adapted, as ordinary 
"alpha-beta" searching has been, to take 
advantage of special features of a 
particular game. 
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