
EVALUATING SEARCH METHODS ANALYTICALLY* 

Paul W. Purdom, Jr. and Cynthia A. Brown 

Computer Science Department, Indiana University, Bloomington, Indiana 47405 

ABSTRACT 

A unified approach to analyzing search algorithms is 

presented. Each algorithm is characterized by the types of 

random problems that it can solve rapidly. The results are 

displayed in a way that clearly indicabes the strengths and 

weaknesses of each algorithm. 

Many interesting problems can, at present, best be 

solved by search methods [7]. In the worst case, searching 

requires exponent ial time. Several clever techniques have 

been developed to speed up searching (see, for example, 11, 3, 

6, 8, 12, 13, 14, 15, 20, 21, 221). While each of these tech- 
niques is clearly helpful for some class of problems, it is 

difficult to evaluate the importance of each method (and of 

each combination of methods). Analytical studies have been 

done on several search methods [2, 4, 5, 9, 10, 11, 171. Each 

analysis was parameterixed in a way that emphasized search 

problems for which the method under consideration had an 

interesting behavior. Thus, Goldberg (9, lo] studied the pure 

literal rule using conjunctive normal form (CNF) predicates 

with long clauses, while Brown and Purdom (2, 17] studied 

backtracking using CNF predicates with short clauses. Since 

each algorithm has its own region of interesting behavior, the 

results of the analyses are difficult to compare with each 

other. 

In this paper we describe a unified approach to analyzing 

search algorithms, one that indicates the strengths and 

weaknesses of each algorithm in a way that makes comparis- 

ons straightforward. \Ve first analyze the average time 

behavior of each algorithm on random CNF problems charac- 

terized by u - the number of variables, t - the number of 

clauses, and p - the probability a given literal is in a clause 

(so that the average length of a clause is 2pu ), This step is 

similar to the initial step of previous approaches, which con- 

tinued by choosing particular functions p(u) and t(v) and 

studying the resulting asymptotic behavior. We continue by 

letting p(u) and t(v) be arbitrary functions of v , and 

finding the asymptotic behavior of the algorithm as u 

approaches infinity. Finally, we find the relation between 

PC’(J) and t(u) that charact,erizes the boundary bet,ween 

exponential and polynomial average time for the algorithm. 

The results can be displayed with a diagram of p(u),t(u) 
space which shows the exponential vs. polynomial contour for 

each algorithm. Fig. 1 shows the results for several basic 

algorit,hms. Contours are drawn for ordinary backtracking 
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where all solutions are found, using fixed search order (the 

results are derived in [18]); searching using the pure literal 

rule and a fixed search order [lo, IS]; pattern of occurrence 

(an algorithm developed for use with problems that have only 

g few clauses) [18]; and elimination of unused variables fol- 

lowed by exhaustive search (this paper). Fig. 2. shows the 

results of using t.he same approach to obtain a more detailed 

comparison between ordinary backt,racking and simple search 

rearrangement [16]. From these figures it is clear that the 

pure liberal rule is useful for problems with large clauses (con- 

straints that are easy to satisfy), that backtracking is useful 

for problems with many short clauses (large numbers of con- 

straints that are not easy to satisfy), and that specialized 

methods are useful for problems with a small number of 

clauses (constraints). As more sophisticated algorithms are 

analyzed, the same approach can be used to identify the types 

of problems for which they are most suitable. The approach 

is even more useful for identifying which elementary tech- 

niques should be combined to produce powerful general pur- 

pose algorit,hms. 

2. The Model 

We compute the average running time of each algorithm 

using random CNF predicates. The predicates are formed 
using u variables, and thus 2u literals. A random clause is 

formed by independently selecting each literal with probabil- 
ity p. For each variable the probability of selecting both the 

positive and negative literal is pZ , so tautological clauses are 

common unless p is small (smaller than u -1/2 
). A random 

predicate is formed by independently selecting t clauses. 

Not,ice that for any 0 < p < 1 a/l predicates with t clauses 

are included in the set of model problems. If p is small then 

predicates with short clauses have a higher probability while 

if p is large then predicates with long clauses have a higher 

probability. 

3. Results 

The derivat,ions for the results below are contained in 

the cited papers. 1Ve use the conventions: a = up(u) ; 
ty = (n lnv)/u for some large constant n ; and c is a small 

positive constant. We say f(u) < s(u) when 

lim f(u)/g(u) I 1 * lJ-+CCl 
Polynomial average time is used when: 

1. Ordinary backtracking (fixed search order ) [18]: 

a) a 5 In 2, t 2 ( 
In 2 - rr)u 

-ln( 1 - e-(I) ’ Or 

b) a 1 In 2, t > ( In 2 - a)ud 
, where 

a 
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2. 

3. 

d is the largest root of !n( l-l- d)+ d(ln( I+ l/d)) = 2a. 

Simple search rearrangement backtracking [lS] 

a) same as 1, or ($rl;;mple) 

b) a 2: 3.5, t 2 - 
2ea2 

exp(2a - o) (I+ O(l)) . 

(See (161 for more details). 

Simple pure literal rule [lo, 181 

P 1 E. 

4. Pattern of occurrence [18]: 

t 5 (In In v)/(ln 3). 

Elimination of unused variables followed by exhaustive 5. 

search [this paper]: 

t 5 “/2P. 

The average number of 

when 

t2 ( 
In 2 - a)v 

-In(l - e-‘) - 

solutions per problem is polynomial 

4. Sample Analysis 

To illustrate our method we give a brief analysis of Algo- 

rithm 5. The probability that neither literal for a variable 

occurs in a given predicate is (l-~)~’ . If i variables occur 

in a predicate the time for exhaustive search is 2’ . The pro- 

bability that i particular variables occur, and that the 

remaining u-i do not, is (l-(l-p)2’]i[(l-p)2’]“-i . The 

number of ways to choose i variables out of u is (:!) . 

Therefore the average running time for Algorithm 5 is 

c z’(;)[l+-p)2’]i[(l-p)2’]“-’ = [2-(1-p)2’]” . 

i 

To obtain polynomial time, this average must be no more 

than u” for some n . In other words [2-(l-~)~‘]” 5 u” 

or ln[2-(1-~)~‘] 5 -!!. In u . Since ln[2-(l-p)2’] must be 

small we can use lZ[2-(l-p)2’] w l-(l-~)~’ , which gives 

(l-pj2’ > 1 u - ” In u or (using ln( 1-z) M 2 for small 2 ) 

tL 
II In u a ------=_ 

2up 2p * 

5. Concluaiond 

For random problem sets where p(u) or t(u) is 

extremely large or small there are search algorithms that solve 

the problems in an average time that is polynomial in the size 

of the problem. The time for these eztreme cases is also poly- 

nomial in the number of variables except when p(u) is large 

and t(u) is exponential or larger. 

Each of the algorithms 2-5 has a region of p( u),t( u) 
space where it is much better than any of the other algo- 

rithms. Algorithm 1 is as good as Algorithm 2 for some 

regions. A diagram such as Fig. 1 gives a useful display of 

the strengths and weaknesses of each algorithm. 

Addendum: 

Recently we did a more careful analysis of the pure 

literal rule and showed that it leads t;,~$~somial average 

time when t 5 nlnu and when pt 5 (- ) [19]. This is u 

a major improvement over the performances shown in Fig. 1. 
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Figure 1. ,4 diagram showing the regions of p(v),t(v) space where random CNF predicates can be 

solved in polynomial average time. A portion of the contour separat.ing the region of polynomial 

behavior from the region of exponential behavior is shown for several algorithms. The part of the 

space where each algorithm performs best is labelled with the name of the algorithm. The central 

region contains problem sets for which no polynomial average time algorithm is known. In most of 

this region, the problems have an exponential number of solutions, but below the line marked “solu- 

tions” the average number of solutions is polynomial. The region marked “pseudo-hard” contains 

problem sets for which the analyzed algorithms take average time exponential in the number of vari- 

ables but polynomial in the problem size (the typical problems are exponentially large there). 
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Figure 2. A graph giving more details on the performance of backtracking algorithms. The vertical 

axis is pu , the average number of literals per clause. The horizontal axis is t/u , the number of 

clauses per variable. The curve marked Solutions separates the region where the average number of 

solutions per problem is exponential from where it is polynomial. The curve marked Level 0 
separates the region where the average running time of ordinary backtracking is exponential from 

where it is polynomial. The analysis for simple search rearrangement backtracking produces only 

limits on its performance. The shaded region marked Level 1 separates the region where the average 

running time of simple search rearrangement backtracking is exponential from where it is polyno- 

mial. 
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