
EVALUATING SEARCH METHODS ANALYTICALLY*

Paul W. Purdom, Jr. and Cynthia A. Brown

Computer Science Department, Indiana University, Bloomington, Indiana 47405

ABSTRACT

A unified approach to analyzing search algorithms is

presented. Each algorithm is characterized by the types of

random problems that it can solve rapidly. The results are

displayed in a way that clearly indicabes the strengths and

weaknesses of each algorithm.

Many interesting problems can, at present, best be

solved by search methods [7]. In the worst case, searching

requires exponent ial time. Several clever techniques have

been developed to speed up searching (see, for example, 11, 3,

6, 8, 12, 13, 14, 15, 20, 21, 221). While each of these tech-
niques is clearly helpful for some class of problems, it is

difficult to evaluate the importance of each method (and of

each combination of methods). Analytical studies have been

done on several search methods [2, 4, 5, 9, 10, 11, 171. Each

analysis was parameterixed in a way that emphasized search

problems for which the method under consideration had an

interesting behavior. Thus, Goldberg (9, lo] studied the pure

literal rule using conjunctive normal form (CNF) predicates

with long clauses, while Brown and Purdom (2, 17] studied

backtracking using CNF predicates with short clauses. Since

each algorithm has its own region of interesting behavior, the

results of the analyses are difficult to compare with each

other.

In this paper we describe a unified approach to analyzing

search algorithms, one that indicates the strengths and

weaknesses of each algorithm in a way that makes comparis-

ons straightforward. \Ve first analyze the average time

behavior of each algorithm on random CNF problems charac-

terized by u - the number of variables, t - the number of

clauses, and p - the probability a given literal is in a clause

(so that the average length of a clause is 2pu), This step is

similar to the initial step of previous approaches, which con-

tinued by choosing particular functions p(u) and t(v) and

studying the resulting asymptotic behavior. We continue by

letting p(u) and t(v) be arbitrary functions of v , and

finding the asymptotic behavior of the algorithm as u

approaches infinity. Finally, we find the relation between

PC’(J) and t(u) that charact,erizes the boundary bet,ween

exponential and polynomial average time for the algorithm.

The results can be displayed with a diagram of p(u),t(u)
space which shows the exponential vs. polynomial contour for

each algorithm. Fig. 1 shows the results for several basic

algorit,hms. Contours are drawn for ordinary backtracking

i:ese.srcb reported herein was supported in part by the Nrtionkl Science

Foundation ur,der grant number hfCS 7008110.

where all solutions are found, using fixed search order (the

results are derived in [18]); searching using the pure literal

rule and a fixed search order [lo, IS]; pattern of occurrence

(an algorithm developed for use with problems that have only

g few clauses) [18]; and elimination of unused variables fol-

lowed by exhaustive search (this paper). Fig. 2. shows the

results of using t.he same approach to obtain a more detailed

comparison between ordinary backt,racking and simple search

rearrangement [16]. From these figures it is clear that the

pure liberal rule is useful for problems with large clauses (con-

straints that are easy to satisfy), that backtracking is useful

for problems with many short clauses (large numbers of con-

straints that are not easy to satisfy), and that specialized

methods are useful for problems with a small number of

clauses (constraints). As more sophisticated algorithms are

analyzed, the same approach can be used to identify the types

of problems for which they are most suitable. The approach

is even more useful for identifying which elementary tech-

niques should be combined to produce powerful general pur-

pose algorit,hms.

2. The Model

We compute the average running time of each algorithm

using random CNF predicates. The predicates are formed
using u variables, and thus 2u literals. A random clause is

formed by independently selecting each literal with probabil-
ity p. For each variable the probability of selecting both the

positive and negative literal is pZ , so tautological clauses are

common unless p is small (smaller than u -1/2
). A random

predicate is formed by independently selecting t clauses.

Not,ice that for any 0 < p < 1 a/l predicates with t clauses

are included in the set of model problems. If p is small then

predicates with short clauses have a higher probability while

if p is large then predicates with long clauses have a higher

probability.

3. Results

The derivat,ions for the results below are contained in

the cited papers. 1Ve use the conventions: a = up(u) ;
ty = (n lnv)/u for some large constant n ; and c is a small

positive constant. We say f(u) < s(u) when

lim f(u)/g(u) I 1 * lJ-+CCl
Polynomial average time is used when:

1. Ordinary backtracking (fixed search order) [18]:

a) a 5 In 2, t 2 (
In 2 - rr)u

-ln(1 - e-(I) ’ Or

b) a 1 In 2, t > (In 2 - a)ud
, where

a

124

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

2.

3.

d is the largest root of !n(l-l- d)+ d(ln(I+ l/d)) = 2a.

Simple search rearrangement backtracking [lS]

a) same as 1, or ($rl;;mple)

b) a 2: 3.5, t 2 -
2ea2

exp(2a - o) (I+ O(l)) .

(See (161 for more details).

Simple pure literal rule [lo, 181

P 1 E.

4. Pattern of occurrence [18]:

t 5 (In In v)/(ln 3).

Elimination of unused variables followed by exhaustive 5.

search [this paper]:

t 5 “/2P.

The average number of

when

t2 (
In 2 - a)v

-In(l - e-‘) -

solutions per problem is polynomial

4. Sample Analysis

To illustrate our method we give a brief analysis of Algo-

rithm 5. The probability that neither literal for a variable

occurs in a given predicate is (l-~)~’ . If i variables occur

in a predicate the time for exhaustive search is 2’ . The pro-

bability that i particular variables occur, and that the

remaining u-i do not, is (l-(l-p)2’]i[(l-p)2’]“-i . The

number of ways to choose i variables out of u is (:!) .

Therefore the average running time for Algorithm 5 is

c z’(;)[l+-p)2’]i[(l-p)2’]“-’ = [2-(1-p)2’]” .

i

To obtain polynomial time, this average must be no more

than u” for some n . In other words [2-(l-~)~‘]” 5 u”

or ln[2-(1-~)~‘] 5 -!!. In u . Since ln[2-(l-p)2’] must be

small we can use lZ[2-(l-p)2’] w l-(l-~)~’ , which gives

(l-pj2’ > 1 u - ” In u or (using ln(1-z) M 2 for small 2)

tL
II In u a ------=_

2up 2p *

5. Concluaiond

For random problem sets where p(u) or t(u) is

extremely large or small there are search algorithms that solve

the problems in an average time that is polynomial in the size

of the problem. The time for these eztreme cases is also poly-

nomial in the number of variables except when p(u) is large

and t(u) is exponential or larger.

Each of the algorithms 2-5 has a region of p(u),t(u)
space where it is much better than any of the other algo-

rithms. Algorithm 1 is as good as Algorithm 2 for some

regions. A diagram such as Fig. 1 gives a useful display of

the strengths and weaknesses of each algorithm.

Addendum:

Recently we did a more careful analysis of the pure

literal rule and showed that it leads t;,~$~somial average

time when t 5 nlnu and when pt 5 (-) [19]. This is u

a major improvement over the performances shown in Fig. 1.

REFERENCES

(l] James R. Bitner and Edward M. Reingold, “Backtrack

Programming Techniques”, Comm. ACM, v. 18 (1975) pp.

651-055.

[2] Cynthia A. Brown and Paul Walton Purdom Jr., “An

Average Time Analysis of Backtracking”, SIAM J. Comput.

10 (1981) pp. 583-593.

[3] Martin Davis and Hilary Putnam, “A Computing Pro-

cedure for Quantification Theory”, JAChf, v. 7 (1900) pp.

201-21 s.

II John France, “Average Analysis of the Pure Literal

Heuristic”, Case Institute of Technology Report No. CES-81-4

(1981).
[5] John Franc0 and Marvin Paull, “Probabilistic Analysis of

the Davis-Putnam Procedure for Solving the Satishability

Problem”, Case Institute of Technology Report No. CES-81-3

(June 1981).

[6] Eugene C. Freuder, “A Sufficient Condition for

Backtrack-Free Search”, JACM, v. 29, No. 1 (January, 1982)

pp. 24-32.

[7] Michael R. Garey and David S. Johnson, Computera and

Intractability, W.H. Freeman and Co., San Francisco (1979).

[8] John Gaschnig, “Performance Measurement and Analysis

of Certain Search Algorithms”, Thesis, Carnegie-Mellon

(1979).

[9] Allen Goldberg, “Average Case Complexity of the

Satisfiability Problem”, Proccedinge of the Fourth Workshop

on Automated Deduction (1979) pp. l-6.

[lo] Allen Goldberg, Paul Walton Purdom, Jr. and Cynthia

A. Brown, “Average Time Analysis of Simplified Putnam-

David Procedures”, Info. Proc. Letters (to appear).

[ll] Robert M. Haralick and Gordon L. Elliot, “Increasing

Tree Search Efficiency for Constraint Satisfaction Problems”,

Report from Virginia Polytechnic Institute, 1979.

[la] Robert M. Haralick and Linda G. Shapiro, “The Con-

sistent Labeling Problem”, IEEETPAhU, v. 1 (1979), pp.

1773-184, v. 2 (1980) pp. 193-203.

[13] Burkhard M onien and Ewald Speckenmeyer, “Three-

Satisfiability is Testable in O(1.02’) Steps”, Report No. 3,

Theoretical Informatics Series, University of Paderborn

(1979).

[14] E. T. Parker, “Computer Investigation of Orthogonal

Latin Squares of Order Ten”, Proc. Sym. Appl. hiath., v. 15

(1963), Amer. Math. Sot., Providence, R.I. p. 73.

[15] Paul Walton Purdom, Jr. “Solving Satisfiability Prob-

lems with Less Searching”, Indiana University Computer Sci-

ence Technical Report No. 117 (1981).

[16] Paul Walton Purdom, Jr., “Search Rearrangement Back-

tracking and Polynomial Average Time”, Indiana University

Computer Science Technical Report No. 123 (1982).

[17] Paul Walton Purdom, Jr. and Cynthia A. Brown, “An

Analysis of Backtracking with Search Rearrangement”, SIAM
J. Comput. (to appear).

[18] Paul Walton Purdom, Jr. and Cynthia A. Brown, “Poly-

nomial Average-time Satisfiability Problems”, Indiana Univer-

sity Computer Science Technical Report No. 118 (1981).

125

[19] Paul Walton Purdom, Jr. and Cynthia A. Brown, “The

Pure Literal Rule and Polynomial Average Time”, Indiana

University Computer Science Technical Report No. 128 (to

appear).

[2O] Paul Purdom, Cynthia Brown and Edward Robertson,

“Multi-Level Dynamic Search Rearrangement”, Acta Znjorma-

tica v. 15 (1981) pp. 94114.

[21] Thomas J. Schaefer, “The Complexity of Satisfiability

Problems”, Proceedinga of the Tenth Annual ACh4 Sympoaium

on Theory of Computing, (1978) pp. 216-226.

[22] David Waltz, “Understanding Line Drawings of Scenes

with Shadows”, in The Psychology of Computer Vision, edited

by Patrick Henry Winston, McGraw-Hill, New York (1975).

E

5
x Inv

v In In v

In 2
v

Pure Literal

Hard Problems

0’
/

,/-
I I I I

In In v v In 2 V V”

In In

t(v)

Figure 1. ,4 diagram showing the regions of p(v),t(v) space where random CNF predicates can be

solved in polynomial average time. A portion of the contour separat.ing the region of polynomial

behavior from the region of exponential behavior is shown for several algorithms. The part of the

space where each algorithm performs best is labelled with the name of the algorithm. The central

region contains problem sets for which no polynomial average time algorithm is known. In most of

this region, the problems have an exponential number of solutions, but below the line marked “solu-

tions” the average number of solutions is polynomial. The region marked “pseudo-hard” contains

problem sets for which the analyzed algorithms take average time exponential in the number of vari-

ables but polynomial in the problem size (the typical problems are exponentially large there).

126

8

>
6

Q

Polynomial

I I I I I I I I I

0 1 100 IO4

t/v

106 lo6

Figure 2. A graph giving more details on the performance of backtracking algorithms. The vertical

axis is pu , the average number of literals per clause. The horizontal axis is t/u , the number of

clauses per variable. The curve marked Solutions separates the region where the average number of

solutions per problem is exponential from where it is polynomial. The curve marked Level 0
separates the region where the average running time of ordinary backtracking is exponential from

where it is polynomial. The analysis for simple search rearrangement backtracking produces only

limits on its performance. The shaded region marked Level 1 separates the region where the average

running time of simple search rearrangement backtracking is exponential from where it is polyno-

mial.

127

