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ABSTRACT 

Two new classes of theories have been developed 
giving the expected complexities of three Consistent- 
Labeling Problem (CLP), or Constraint-Satisfaction, 
algorithms: Backtracking, Forward Checking and Word-wise 

Forward Checking. Apart from giving the exact expected 
complexity for these algorithms for the underlying CLP 
distribution and domain, these theories provide useful 
approximations for the complexity of solving essentially 
any individual CLP. Given this, and the fact that the 
theories can reflect changes in complexity due to changes 
in the ordering of variables used in the search, these 
theories have the potential to afford significant savings for 
any individual CLP, by predicting, prior to search, good 
orderings for use in solving that CLP. We are concurrently 
developing improved CLP algorithms based on this and 
similar ordering effects. 

I INTRODUCTION 

The consistent-labeling problem (CLP) is an NP- 

complete problem (see [ 11) of broad relevance in Artificial 
Intelligence and Operations Research. In [2] Haralick shows 
the breadth of this class of problems. (We also refer the 
reader there, and to [3], for references to the literature 
on CLP algorithms.) Binary CLPs, on which we concentrate, 
are seen to be a significant subclass, including graph and 
subgraph isomorphism detection, graph coloring, boolean 
satisfiability, and packing problems, as well as specialized 
cases of several other important problems. Analytically, 
binary CLPs provide a useful special (yet far from trivial) 
case from which to pursue results for general CLPs. 
Unless stated otherwise, the term CLP will refer to a binary 
CLP. 

In [3] Haralick presents, for two different algorithms, 
an analysis of the expected complexity of obtaining all 
solutions of a CLP, for CLPs arising according to a certain 
one parameter probability distribution. This distribution is 
used by Haralick in generating random CLPs for an empirical 
comparison of seven different algorithms. We call these 
level -0 theories. For the CLP distribution they assume, 
they provide exact expected values.’ However, we have 
found that these theories can be interpreted as providing 
approximate, but quite accurate, estimates for certain 
individual CLPs. In fact, by generalizing his analyses to 
apply to a more richly parameterized distribution, giving 

‘Apart from a subtle error that we have found, which is 
beside the point at this stage. See section IV.B below. 

level-l theories, we can obtain good estimates for any 
individual CLP solved by the corresponding algorithm leg. fig 
IV- 1). 

A significant aspect of these generalized theories (as 
opposed to the level-0 theories) is that they are able to 

capture for a given CLP, the effects on algorithmic 
complexity resulting from a change in instantiation-order or 
consistency-checking order used during solution leg. fig. 

IV-2). The theories can thus lead to significant savings by 
providing a basis for an intelligent choice of those 

orderings. We are in fact, complimentary to our 
mathematical analyses, developing improved CLP algorithms 
capable of exploiting such order-dependent effects [4, 71. 

Empirically, word-wise for bit-parallel) Forward 
Checking (wFC) was found best amongst the seven 
algorithms Haralick tested, with Forward Checking (FC) 
second best. Haralick obtained level-0 theories for 
Backtracking (BT) and Forward Checking. In [5] we obtain 
level- 1 theories for BT and FC as well as for wFC (whose 
level-0 form does not appear in [3]1. Level-2 theories, 
that improve on their level- 1 counterparts, are obtained in 

[6] for FC and wFC; though superseded in accuracy, 
level- 1 theories remain useful in being more manageable 
analytically for deriving subsequent results, in particular 
analytically justified ordering heuristics. 

As representative of our work on FC, wFC and BT, we 
present here analytic and empirical results for FC only. 
Theory-O, theory-l and theory-2 will be used below to 
denote the corresponding level theories for FC. We present 
theory- 1, indicating its similarity to theory-2, and present 
experiments showing the accuracy of both theories in 
estimating, for individual CLPs, the complexity of solution, 
as well as in estimating the optimal orderings to use. A 
fuller account of our work is to be published in 171. 

II CONSISTENT-LABELING PROBLEMS 

A general consistent-labeling problem is characterized 
by a finite list2 of n variables; each variable, v, or simply i, 
having an associated finite domain, from which it can take 
any of m, values or labels. Constraints exist on which 
values are mutually compatible for various subsets of the n 
variables. The goal is to find one or more sets of 
assignments of all n variables to values in their 
corresponding domains, such that for each assignment set 
all constraints are simultaneously satisfied. If the 
constraints exist between some pairs of variables, but not 

2We consider both the variables and their domains to be 
ordered. 
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between any triples or larger subsets of the n variables, 
then we have a binary consistent-labeling problem. Binary 
CLPs can be represented by their relations matrix CR?,], a 
bit-matrix such that R& = 1 iff the k-th value for variable i 
is consistent with the I-th value for variable j. Otherwise bit 
I?;,], = 0. Symmetries in [R$] allow us to restrict our 
attention to the N E ( “2 1 component relation3 matrices 
CR;{‘] of the relations matrix, for which i’ < j’. For later 
use, we define M,j z m,m, , and m to be the vector 
Cm, m2 . . m,] of domain sizes. 

We consider two CLPs to be equivalent iff their two 
relations matrices are identical. Then, in the class K( n m ), 

of CLPs on n variables, the i-th having domain size m, , 
there are n,<j 2”~, different CLPs. The number of ones in 

[Rk{‘] we call the compatibility-count, I,,,, , for variables i’ 

and j’, and equals the number of ways that these two 

variables can be compatibly assigned values in their 

respective domains. A CLP’s matrix [I~,], of compatibility- 

counts (with Ikk undefined), we call its cc-matrix; the 

matrix Cr,,l of compatibility-ratios or simply 
compatibilities, r,, E I,, / M,, , we call its cr-matrix. Note 

that r,, l ( 0 1 /M,, 2/M,, . . . 1 1, in contrast to their 

counterparts, p,j , to be defined later. 

CLPs in K( n m 1 having the same cc-matrix [I,,] (and 
hence cr-matrix) are compatibility equivalent, and call into 
the same compatibility equivalence class or c-class, 

denoted K( n m [l,jI 1 or Ki Cl,,] 1 when n and m are 
understood. The importance of these c-classes is 
explained in section III. There are n,,, [ M,, + 1 I different 
c-classes for a given n and m, and the number of 
dtf ferent CLPs in such a class for a given cc-matrix, [Ii,], 

Haralick [3] considers CLPs of K( n m ), with mi = m 
for all i, to arise such that the probability of compatibility 
of any two labels for any two variables is a fixed value, 
p. We make use of a natural generalization of this, where a 
separate probability, p,, , is allowed for each of the N 
ways to pair variables. We also generalize to allow non- 
equal domain sizes mi The corresponding probability 
distribution for individual CLPs, of cc-matrix Clij], in 
K( n m ) is then 

P( CLP 1 Cp,,l 1 = ,Il, p,,‘ij ( i - p,, j”lj-‘lj 

Expected values of CLP-dependent quantities over all 
K( n m ), when CLPs arise according to this CLP- 
distribution, we call distribution averages, as opposed to 
c-class averages which we will be using them as 
estimates for. How and why, are explained in the following 

section. 

Ill OUR ESTIMATION STRATEGY 

What we really want to achieve is GOAL A: Obtain 
analytic expressions for f,(CLP) k = 1, 2, 3, being the 
exact values respectively, for a given CLP, of its number 
of solutions, of nodes in its search tree and of consistency 

checks carried out in the search; the latter two are 

algorithm dependent, the last being a true indication of the 

algorithm complexity [3] Exact values for any given CLP, 

3Primed indices denote fixed though unspecified values. 

seem an unrealistic goal. However, we have found that the 
spread for each of these quantities over CLPs within a c- 
class, is quite small; for k = 2 and 3, c-class standard 
deviations are about 5% to 10% of the class average 
values. We have thus aimed for the averages over a c- 
class, taking CLPs as equally likely within a class, as 

estimates for a given CLP of that class. If CLPs of a class 
are equally likely in practice, then this class average 
minimizes the sum, over CLPs of the class, of square 
errors from the actual values. In this sense it is the best 
estimate for a given CLP as a function of its [lij] matrix 
only. In any case, because of the homogeneity amongst 
CLPs in a class, any distribution used would lead to 
essentially equally good estimates for individual CLPs in the 

class - the expected value of say, 5.1, 5.0 and 4.9 is near 
to 5.0, and hence to any of the three numbers, independent 
of the weights we assign to these numbers. We have then 

GOAL B: In order to approximate f,(CLP) of Goal A, obtain 
analytic expressions for that CLP’s c-class averages 

F,( Cl,,] 1 = C f,(CLP) / 1 K( El,jI 1 1 
CLPEK([ I,, 1) 

In [6] and [7] (for FC and wFC) we present exact 

expressions, constituting our level-2 theories, for these 

class averages. However, our chronologically earlier level- 1 
theories (for FC, wFC and BT) provide quite accurate 
approximations for them. It is in obtaining these level- 1 

theories that the generalized CLP generation model of the 
previous section provides a tool.4 Replacing Haralick’s 
single parameter, p, by a matrix of parameters, [Pi,] t 
provides sufficient structure so that the distribution average 

E( f,(CLP) 1 CPljI 1 E C f,(CLP) p( CLP 1 Cpljl 1 
CLPEK( n m ) 

of a CLP-dependent quantity, f,(CLP), can provide a good 
estimate of that quantity’s c-class averaged value, F,( [l,j] ), 
for any given c-class; providing we know how to choose 
the distribution parameters, Cp,,], appropriately for that 

class. In [S] we present several reasons why a good 
parameter-matrix choice for approximating a class average 

P( Cl,,] 1 , is LpijI = Cr,jI = [ Ii, / Mi, 1. Given this, we 

then have our final GOAL C: Obtain analytic expressions for 
the distribution averages E( f,(CLP) 1 CPijI 1. Then as 
approximations for the c-class averages F,( [I,,] ), of Goal 
B, use E( f,(CLP) I [r,,] ). Haralick’s level-0 results provide 
these distribution averages for the [p,j] = [p] case.5 We 
have found them good estimates for averages over c- 
classes having uniform [r,,] = [r], when p = r is used in 
his level-0 theories. We generalized to include non-uniform 
[p,,] so as to obtain level- 1 theories that are equally 
accurate for classes with a non-uniform cr-matrix [r,,]. 

4Here, unlike in [3] where it models an actual 
experiment, it is a technical device only, for giving 
distribution averages that approximate c-class averages. Its 
use for this purpose implies no assumptions about the CLP 
distribution occuring in practice. 

5We use [x] to indicate 
elements are equal to x. 

a matrix all of whose (defined) 
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IV FORWARD CHECKING - EXPECTED COMPLEXITY 

A. Nomenclature 

The instantiation order, F, 5 ( i, i2 . . i, 1, denotes 
the g/obally fixed6 order in which the n problem variables 
are assigned a value during the search. All nodes at level 
k of the tree have the same assigned variables A, = 
( i , i, . . . i,_, i, 1. Variables that remain to be instantiated 
after level k, make up the list of future variables for that 
level F, = ( i,, , ik+2 . . . i, I. For added generality we allow 
an independently specifiable consistency-checking order 

GG E ( i’, ii . . . i; 1, according to which, future variables f E 
F, are to be selected for forward checking at any node of 
the search tree; at level k they are chosen in the order of 
the list G, , defined as F, reordered according to G,. The 
j-th element of the list G, is denoted g,k . In the theory 
below, products and sums over zero number of terms are 
to be taken as resulting in 1 and 0 respectively. 

B. Analytic Results 

With the above definitions, we now present our level- 1 
theory for FC (theory- 11, giving the distribution averages 
of f,(CLPI k = 1, 2, 3. (See [S] for the derivation by a 
direct generalization of that in 131. In [6] and [7] an 
alternative recursive derivation is given that has the 

advantage of unifying both level- 1 and level-2 theories.) 
The expected number of solutions is S of eqn. ! 1). This is 
not a function of the algorithm used but other results here 
are specific to the FC algorithm. The expected number of 
nodes that appear at level k of the FC algorithm’s 
search tree is nk of eqn. (2). SC:) = 1 - Wtk) is the 
Survival probability of variable f when the first kf variables 
of F, have been instantiated, expressed in terms of the f 
variable’s Wipe-out probability: Wik) = ( 1 - 

m, Pf, Irnf . 

s = ! I/ mi 1 ( II p,, 1 
’ k 

11) 
I<J 

nk = s:“- ‘) 1 

f 
mk = 

(2) 

(41 

(5) 

The expected number of labels for future variable f, 
before forward checking at level k is ml of eqn. (31, in 
terms of which the expected number of consistency- 
checks per node, during forward checking at the k-th 
level, is ck of eqn. (4). The expected (total) number of 
consistency checks during forward checking at the k-th 
level is then given by: Ck = “k ck. The Sum, c, Of Ck Over 

6The algorithms we are developing have orderings that 
are dynamically decidable at each node. However a globally 
fixed order 1 acts as default in case of decision ties. It is a 
good choice for this default that we hope to arrive at 
through our analyses. 

the n levels of the tree is an appropriate unit for the 

expected complexity of FC [3]. 

The relation between Haralick’s level-0 theory for FC 
and our level-l theory above requires that our results 

reduce to his when all p,j = p and all m, = m. This is in 
fact the case with the exception of expression (4) for ck. 
This difference is due to a subtle error we have found in 

[3], so that Haralick’s ck is the specialized form of eqn. 
(4) with the denominator term, Sk- ‘I, removed (i.e. replaced 

by 1). The theory-0 used beloakis the corrected version, 
using the specialized form of eqn. (4) as given here. 

Though our level-2 theory for FC [6, 71 requires a 
more complicated expression for the wipe-out probability 
Wp), we note here that apart from this, the more accurate 
level-2 theory is exactly as for the level- 1 theory above 
(but with p,, already replaced throughout by r,,, as we are 
required to do in fact, when applying theory- 1 for a class 
with cr-matrix [r,,] 1. 

C. Examples and Discussion 

Remember that the above theory- 1 gives distribution- 

average values for CLPs arising according to the generalized 
model of section II (and as such they are exact), and these 
are to be used as estimates for c-class averages by 
setting [p,,] equal to the class cr-matrix [r,j]. Theory-2 
gives these c-class average values exactly. A c-class 
average in turn, is intended to be a useful estimate for any 
individual CLP of that class. The following experiments 
show the usefulness of both our theory-l and theory-2 
for these ends. 

Figure IV- 1 compares theory-l and theory-2 with 

experiments over all 125 c-classes for the 4096 CLPs 
with n = 3 and m, = 2 V i, using orderings F, = G, = 

( 1 2 3 1. For each c-class, all CLPs were solved by FC. 
The experimental c-class average of the number of 
nodes/CLP (#nodes) and consistency-checks/CLP (#checks) 
in a problem’s search tree is shown. For the latter (only) we 
also indicate the corresponding experimental standard 

deviations for the c-classes (note that they are quite small 
and many are even zero!). As required, we use in theory- 1 
Cp,,l = [I,, / M,j] for each of the 125 classes arising from 

42, ’ 13’ 123 E ( 0 1 2 3 4 I. 

Figure IV-2 shows, using the 5-Queens problem and 
another CLP randomly selected from the same c-class, the 
ability of theory-l and theory-2 to reflect complexity 

changes resulting from changes in instantiation and 

consistency-check order (here F, = G,) used in the 
algorithm. The permutation# indicates the permutation of 
(1 2 3 4 5) used for these orders, where permutations are 
arranged in lexographic (increasing numerical) order; the 
60-th being (3 2 5 4 11.’ As required, we set [p,,] to 

the problems’ (common) [r,j] matrix in applying theory- 1. 

It is possible to show generally that for n-Queens 

problems, 

[r,,] = [(n2- 3n + 21 i-j 1 ) / n2 ] 

‘Results for theory-O, theory- 1, theory-2 and the 5- 
queens CLP are symmetric, and for CLP 
about 

nearly symmetric, 
“permutation# 60.5”. We there ore + 

discuss, results only up to permutation# 60. 
display, and 
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Figure IV-l: Experimental and theoretical c-class averages 
for CLPs of K( 3 [2 2 21 I, using FC. 
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Figure IV-2: Variation of the #checks in the FC search tree, with 
variables-ordering used, for CLPs in the 5-queens’ c-class. 
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The figure shows empirical results for two individual 
CLPs representative of their c-class, in comparison with the 
theoretical results which give class averages. Agreement 
between theories 1 and 2 and the two individual CLPs is 
seen to be good, especially in regard to ranking of orders. 
For example, the permutation that is optimal for reducing 

average complexity over the c-class, is given by the exact 
theory-2 to be permutation# 57 or (3 2 4 1 5). The 
approximate theory- 1 is seen to agree. Moreover, for the 
individual CLPs this is in fact the optimum order for CLP,, 
and the 5-th best for use with CLP, (5-queens). 

Regarding predicting class averages: For the class 
average number of solutions, theory- 1 gives the same, 
exact result as theory-2. For #nodes and #checks in the 
search tree, the theory- 1 approximation seems to 
consistently underestimate slightly the exact theory-2 c- 
class averages. This underestimation varies with c-class and 

order(s) used, but seems to generally be small: about 5% to 
10% (less than 5% everywhere in figs. IV- 1 and IV-2). 
Furthermore, this underestimation needn’t impare theory- l’s 

ability to predict optimal (w.r.t class average) orderings; as 
long as theory- 1 “shadows” well the variation of the exact 
theory-2, so that the peaks and troughs of the two occur 
essentially at the same orderings; Figure IV-2 and similar 
plots certainly show this to be the case. 

Regarding predicting values for individual CLPs using the 
class average: In preliminary experiments we have found 
that for the #nodes and #checks in a tree, the ratio of 
standard deviation over a c-class to the class average value 
is also around 5% to 10%. This is reflected in the standard 
deviations in fig. IV- 1 and by the closeness of the two 
CLP curves, to the exact theory-2 curve in fig. IV-2. Our 
partitioning scheme is thus justified as being appropriate 
for our aim of obtaining quite homogeneous classes so that 
a c-class average, in general, gives a good estimate for 
individual CLPs of the class. 

V IMPROVED CLP ALGORITHMS 

The ability, shown for FC in fig. IV-2, of our level- 1 
and level-2 theories to capture the order-dependence of 
complexity for the three algorithms analysed, suggests using 
the theories in determining (quasi) optimal global orderings 
before search begins. This requires solving, or inverting, the 
theories to express the complexity-minimizing orders as a 
function of cc-matrix, rather than giving complexity as a 

function of orders and cc-matrix, as at present. We have 
not yet achieved such an inversion. However, there are 
several promising paths to at least an approximation method 
for such optimum global orderings. Until recently, we have 
concentrated on a simpler goal of using the theories and 
heuristic reasoning to suggest locally good orderings. 
These are built up of a sequence of choices that are 
individually good without ensuring the goodness of the 
overall orders. The theory can be used for this because 
each node of a tree corresponds to sub-CLP of the 
original CLP; a k-th level node corresponds to a sub-CLP 
having n-k variables, those in F, at the node, with 
respective domains being the values that have survived 
from the original domains for those variables. As a result, 
any local heuristics suggested by the theory for use at the 
root can also be applied at any node throughout the tree, 
using the new parameters for that node. We have obtained 

and tested several such heuristics for instantiation ordering 
and consistency-check ordering. Results are presented in 

c4. 71. Such dynamically-determined orderings have 

resulted in signif icant improvements. However, further 

efficiencies exist to be had using a combined local/global 
(dynamic/static) approach where global orderings provide 
good defaults when local heuristics lead to ties. Theoretical 

determination of good global-ordering heuristics is our next 
goal. 
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