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ABSTRACT 

Effective control in a multi-level cooperating 
knowledge source problem solver (such as 
Hearsay-II) requires the system to reason about the 
relationships among competing and cooperating 
knowledge source (KS) instantiations (both past and 
potential) that are working on different aspects 
and levels of the problem. Such reasoning is 
needed to assess the current state of problem 
solving and to develop plans for using the system's 
limited processing resources to the best advantage. 
The relationships among KS instantations can be 
naturally represented when KS activity is viewed 
simultaneously from a data-directed and a 
goal-directed perspective. In this paper we show 
how data- and goal-directed control can be 
integrated into a single, uniform framework, and we 
present an example and experimental results of 
sophisticated focusing using this framework. 

I INTRODUCTION 

The multi-level cooperating knowledge source 
model of problem solving, as posited by the 
Hearsay-II architecture, poses interesting control 
problems. Effective control using such a problem 
solving approach requires the control component to 
reason about the relationships among competing and 
cooperating knowledge source (KS) activities (both 
past and potential) and among KS activities working 
on different aspects and levels of the problem. 
Such reasoning is required in order to assess the 
current state of problem solving and to determine 
how the system should use its limited processing 
resources to the best advantage. 

devel 
For example, the control component needs to 
.op and reason about sequences of KS activities 
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relating to a particular approach to one aspect of 
the problem. This allows' these activities to be 
scheduled as a coherent unit and to be eliminated 
as a unit if the approach proves unproductive. A 
second example is the implementation of an 
opportunistic scheduling strategy where the partial 
solution of a high-level problem is used to focus 
the system on low-level activities required to 
solve the remainder of the problem (focus of 
attention through subgoaling). Other examples are 
selecting a specialized KS to resolve the system's 
confusion over competing partial solutions and 
instantiating activities to produce input data 
necessary for performing an important activity 
(precondition-action backchaining). All of these 
examples rely on the control component's ability to 
evaluate the the potential effects of KS activities 
from a non-local context. 

The data-directed and instantaneous scheduling 
mechanisms developed for the Hearsay-II speech 
understanding system could reason about KS 
relationships in only a rudimentary way [5l. That 
level of reasoning was sufficient for the KSs used 
in the final configuration of that speech system 
t33. However, the limitations of this rudimentary 
control have become increasingly apparent to us and 
others as the multi-level cooperating KS model has 
been applied to different task domains [ll. 

Nii and Feigenbaum with SU/X [81, Engelmore 
and Nii with SU/P [21, and Erman, et al., with 
Hearsay-III [4l recognized these limitations and 
consequently have developed systems with enhanced 
control capabilites. These enhancements permit 
more sophisticated control over scheduling by 
allowing the KS scheduling queues to be manipulated 
under program control. However, these modifi- 
cations do not explicitly formalize the relation- 
ship among KS activities. Such relationships are 
left to the user to build. We feel these relation- 
ships need to be explicitly formalized if domain- 
independent control strategies are to be developed. 
The premise of this paper is that these relation- 
ships become apparent in a control framework in 
which KS activity can be viewed simultaneously from 
a data-directed and a goal-directed perspective. 

In this paper, we first review the data- 
directed scheduling mechanisms of Hearsay-II. 
Next, we indicate how data-directed and goal- 
directed control can be integrated into a single, 
uniform framework through the generation of goals 
from data-directed events and we show the 
structural relationships among KS activities that 
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this framework creates. We show an example of this 
framework performing sophisticated focusing of KS 
activity and present experimental results that show 
the advantages of the unified approach over a 
purely data-directed approach to control. 

II DATA-DIRECTED HEARSAY-II SCHEDULING 

Figure 1 presents a high-level schematic for 
data-directed control in Hearsay-II. KSs are 
invoked in response to particular kinds of changes 
on the blackboard, called blackboard events. The 
blackboard monitor knows which events at which 
levels interest each KS. The occurence of a black- 
board event does not guarantee that there is, in 
fact, sufficient information on the blackboard for 
a KS to be executed. The blackboard monitor 
executes a precondition procedure for each 
interested KS to make a more detailed examination 
and, if sufficient information is found, a KS 
instantiation (KS11 is created and placed onto the 
scheduling queue. The scheduler calculates a 
priority rating for each KS1 on the scheduling 
queue, selecting for execution the one with the 
highest rating . Execution of the KS1 causes 
changes to the blackboard which trigger additional 
blackboard events and the process continues. 

Al though this data-directed Hearsay-II 
architecture has many advantages, it is severly 
limited in its ability to plan its interpretation 
activities. Scheduling is instantaneous -- only 
the immediate effects on the state of problem 
solving are considered. There is no inference 
process used to determine the effects of executing 

Blackboard 

_---- ---- 

Data e 

a KS beyond its immediate effects on the system 
state. Another limitation of this scheduling 
approach occurs when the precondition procedure 
cannot find sufficient information for the KS to be 
instantiated. The scheduler does not record which 
information is missing and has no way of 
re-evaluating the priorities of a pending KS that 
can generate the missing information or 
instantiating the KS if it is not already present. 
In the data-directed architecture it is assumed 
that if the information is really important it will 
eventually be generated based on normal scheduling 
considerations. 

To remedy these control limitations within the 
basic Hearsay-II architecture, we next present an 
augmented version of the architecture that 
integrates data- and goal-directed control of KS 
activity via the generation of goals from black- 
board events. Within this augmented architecture, 
a wide range of scheduling paradigms can be 
implemented efficiently: from those based on an 
instantaneous, statistical and data-directed 
approach to those based on complex planning of 
goal-directed activity. In this way, the system 
developer can tailor the control to the specifics 
of the task domain and KS configuration. 

III GOAL-DIRECTED HEARSAY-II SCHEDULING 

Figure 2 presents a high-level schemantic of 
Hearsay-II as augmented to accomodate goal-directed 
scheduling. A second blackboard, the goal black- 
board, is added that mirrors the original (data) 
blackboard in dimensionality. The goal blackboard 
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FIGURE 1: Data-Directed Hearsay-II Architecture FIGURE 2: Goal-Directed Hearsay-II Architecture 
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contains goals, each representing a request to 
create a particular state of hypotheses on the data 
blackboard in the (corresponding) area covered by 
the goal. For example, a simple goal would be a 
request for the creation of a hypothesis with 
specific attributes above a given belief in a 
particular area of the data blackboard. 

The integration of data-directed and goal- 
directed control into a single, uniform framework 
is based on the following observation: 

The stimulation of a precondition process 
in the data-directed architecture not 
only indicates that it may be possible to 
execute the knowledge source, but that it 
may be desirable to do so in order to 
achieve the goal implicit in the output 
of the KS. 

In order to make these implicit goals explicit, the 
event-to-KS mapping contained in the blackboard 
event table is split into two steps: event-to-goals 
and goals-to-KSs. The blackboard monitor watches 
for the occurrence of a data blackboard event, but 
instead of placing KSIs on the scheduling queue, it 
uses the event-to-goals mapping to determine the 
appropriate goals to generate from the event and 
inserts them onto the goal blackboard. Goals may 
also be placed on the goal blackboard from external 
sources. Placing a high-level goal onto the goal 
blackboard can effectively bias the system towards 
developing a solution in a particular way. 

A new control component, the planner, is also 
added to the architecture. The planner responds to 
the creation of goals on the goal blackboard by 
developing plans for their achievement. In their 
simplest form these plans consist of goal/KS1 
relationships which specify one or more KSs which 
can potentially satisfy the created goals. The 
planner uses the goal-to-KS mapping to create these 
KSIs. More sophisticated planning activities 
consist of building goal/subgoal, precondition 
goal/KSI, and overlapping goal relationships Cl]. 
The scheduler uses the relationships between the 
KSIs and the goals on the goal blackboard as a 
basis for its scheduling decisions. 

We have implemented a version of the goal- 
directed Hearsay-II architecture in a distributed 
interpretation system which produces a dynamic map 
of vehicles moving through a geographical area [71. 
Figure 3 shows how goal-directed focusing can be 
used in this application to increase the priority 
rating of low-level KS1 based on the creation of a 
high-level hypothesis. The processing levels in 
order of increasing abstraction are: signal 
location (SL) ) group location (GL), vehicle 
location (VL), and vehicle track (VT).* 

The creation of SL hypothesis H:SL:Ol on the 
data blackboard causes the planner to create GL 
goal G:GL:Ol on the goal blackboard. This goal 
indicates that the system should attempt to form a 
GL hypothesis using H:SL:Ol. The planner next 

+. Additional processing levels used in the system 
are omitted here. 
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FIGURE 3: An Example 

instantiates KS1 S:SL:GL:Ol to try to achieve this 
goal. The rating of a KS1 is a function of the 
belief of its stimulus hypotheses and the priority 
rating of its stimulus goals (if any). The 
priority of a goal is a function of the belief of 
its stimulus hypotheses, its level on the black- 
board, and its relationships with other goals. 
Assume that H:SL:Ol is weakly believed and 
consequently S:SL:GL:Ol is given a low execution 
rating. Processing continues with other SL hypoth- 
eses and eventually creates a VT hypothesis H:VT:Ol 
with a moderately high belief. The creation of 
this hypothesis causes a number of goals to be 
created, including the goal shown in the figure, 
G:VT:02. This goal indicates that the system 
should attempt to extend H:VT:Ol. 

The planner uses domain knowledge in the form 
of a goal-to-subgoal mapping for decomposing this 
high-level goal into a SL level subgoal, G:SL:03. 
This subgoal indicates in what area is necessary to 
have SL hypotheses in order to eventually extend 
the VT. hypothesis. Subgoal G:SL:03 is given the 
same priority rating as its parent goal G:VT:02. 
The planner finds that H:SL:Ol has already been 
created in this area and can satisfy G:SL:03. The 
planner then creates subgoal G:GL:04 and finds that 
goal G:GL:Ol overlaps with it. The planner adds 
G:GL:04 as a second stimulus goal of the low-rated 
KS1 S:SL:GL:Ol. The addition of the higher 
priority goal causes the rating of the KS1 to be 
increased based on its potential contribution to 
the track extension goal G:VT:02. 

Subgoaling can reduce the combinatorics often 
associated with the top-down elaboration of hypoth- 
eses. Top-down elaboration is generally used for 
two different activities: the generation of the 
lower-level structure of a hypothesis (to discover 
details) and the determination of which existing 
low-level hypotheses should be driven-up to create 
or verify a high level hypothesis based on 
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expectations (for focusing). Top-down elaboration 
of hypotheses is best suited only to the first 
activity -- subgoaling on the goal blackboard is a 
more effective way to perform expectation-based 
focusing. When hypothesis elaboration is used as a 
focusing technique, the elaboration process has to 
be conservative in order to reduce the number of 
hypotheses generated and to reduce the possibility 
of generated low-level hypotheses being used as 
“real data” by knowledge sources in other contexts. 
Because subgoals are distinct from hypotheses, they 
can be liberally abstracted (such as supplying a 
range of values for an attribute) and under- 
specified (such as supplying a “don’t care” 
attribute). Therefore’ subgoaling the high-level 
goal of generating the expectation-based hypothesis 
(including the use of “level-hopping”) avoids the 
combinatorial and context confusion problems 
associated with the use of top-down hypo the si s 
elaboration for focusing. 

Planning operations, such as subgoaling -and 
precondition goal/KS1 chaining, permits sophis- 
ticated opportunistic focusing to be performed by 
the planner and scheduler. Highly rated low-level 
hypotheses can be driven up in a data-directed 
fashion while high-level goals generated from 
strong expectations can be subgoaled downward to 
control low-level synthesis activities (as in the 
above example) . Similarly, processing in low rated 
areas can be stimulated if a highly rated knowledge 
source requires the creation of a precondition goal 
in that area. 

IV FOCUS OF ATTENTION EXPERIMENTS USING 
SUBGOALING 

We are beginning to experiment with the use of 
subgoaling as a focus of attention mechanism. Our 
goal is a set of rigorous experiments that quantify 
those situations in which subgoaling outperforms a 
simpler ’ purely data-directed approach. The 
characteristics we are varying include the 
confusability of the input data and the power of 
the KSs to resolve this confusability and to make 
effective predictions. To vary the power of KSs we 
are using a semi-formal model for simulating KSs of 
different power through the use of an oracle C6.73. 
We also plan to vary the weighting factor used by 
the scheduler for evaluating KSIs. This weighting 
determines, in part, the balance between data- 
directed and goal-directed focusing by adjusting 
the relative contributions of the priority of goals 
that are potentially satisfied by a KS1 and the 
predicted quality of the hypotheses produced by the 
KSI. 

Figure 4 illustrates a simple scenario in 
which subgoaling high-level expectations effec- 
tively reduces the amount of processing required to 
generate the correct answer. In this figure, there 
are two tracks: one representing the signals from 
an actual vehicle and the other a false ghost 
vehicle. The actual track data consists of a 
sequence of high belief SL hypotheses surrounding 
an area of low belief SL hypotheses. The ghost 
track consists of a uniform sequence of medium 
be1 ief SL hypotheses. The two tracks are 
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FIGURE 4: The Experiment 

sufficiently close that the system can produce 
track hypotheses composed of locations from both 
the actual and the ghost track. For simplicity, 
each vehicle is assumed to emit a single signal 
frequency. 

Without focusing through the creation of 
subgoals, the system executes 54 KSIs to completely 
generate the correct track. With subgoal focusing 
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based on subgoaling at the VT level the system 
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