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ABSTRACT 

The paper describes an algorithm based 
on AI techniques for recognizing words of 
printed or hand-written text--with the 
technique developed also applicable to cor- 
recting substitution spelling errors. The 
algorithm effectively integrates bottom-up 
information in the form of letter shapes, 
letter transitional probabilities and 
letter classification-error probabilities 
together with top-down knowledge in the 
form of a lexicon of legal words repre- 
sented as a letter trie. Experimental re- 
sults with the algorithm are reported for 
the combined top-down and bottom-up ap- 
proach and for each of the two approaches 
individually. 

I INTRODUCTION 

The recognition of text that is ma- 
chine printed with multiple fonts, hand- 
printed, or written as cursive script 
finds many applications including that of 
office automation. Some present genera- 
tion optical character readers [OCRs] 
accept single font machine print or text 
hand-printed under certain constraints. 
Any deviation from these constraints re- 
sults in rejection or a highly garbled 
representation of the text. 

Human beings perform better than present 
OCRs by at least an order of magnitude in 
error rate although their performance when 
viewing a letter in isolation does not 
significantly differ from OCR error rate. 
This is attributed to effective use of con- 
textual factors like letter sequences, 
vocabulary, word-dependency, sentence- 
structure and phraseology, style and sub- 
ject matter as well as the associated pro- 
cesses of comprehension, inference, asso- 
ciation, guessing, prediction and imagina- 

tion, all of which take place very na- 
turally during the process of reading. 
The example of Fig. 1 illustrates some as- 
pects of this process. Although the let- 
ters 'H' and 'A' in the words 'THE' and 
'PAPER' are identically printed--thereby 
leading to identical feature vectors--they 
are easily distinguished by the human 
reader due to the presence of surrounding 
letters in the respective words. The last 
word of the sentence is either 'CLIP' or 
'CUP' which can be disambiguated by more 
global knowledge, e.g., if the next sen- 
tence were 'I NEED SOME COFFEE' then the 
word in doubt is probably 'CUP'. 

It is clear that if computer programs 
are to reach expert human ability in text 
recognition then they need to be able to 
effectively integrate diverse contextual 
knowledge sources about the text, as well 
as knowledge about the kinds of textual 
errors that are likely, i.e., characteris- 
tics of the text transmission channel that 
introduces errors. A number of programs 
that utilize only a few knowledge sources 
in text recognition are described in the 
literature; tutorial surveys of these 
methods have been made [1],[2]. Some of 
these methods, viz., text recognition al- 
gorithms, are directly applicable to a set 
of image vectors representing characters 
of text and others, viz., text error cor- 
rection algorithms, are applicable only to 
previously decoded text. A majority of 
these methods can also be characterized 
as those that are data-driven or bottom-up, 
and those that are concept-driven or top- 
down. 

Data-driven algorithms proceed by re- 
fining successive hypotheses about an in- 
put string. An example is a program that 
utilizes a statistical (Markovian) repre- 
sentation of contextual knowledge in the 
form of a table of transitional probabili- 

NAND ME TftE PtWER CUP 
Fig. 1. Identical patterns have different interpretations in different contexts. 
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ties, i.e., the probability of each letter 
given that a letter sequence has pre- 
viously occurred. Concept-driven algo- 
rithms proceed with an expectation of what 
the input string is likely to be and pro- 
ceed to fit the data to this expectation. 
Examples are algorithms that use an impli- 
cit or explicit representation of a lexi- 
con. 

This paper describes an algorithm 
that effectively merges a bottom-up refine- 
ment process that is based on the utiliza- 
tion of transitional probabilities and 
letter confusion probabilities, known as 
the Viterbi Algorithm [VA], together with 
a top-down process based on searching a 
lexicon that is applicable to text con- 
taining an arbitrary number of character 
substitution errors such as that produced 
by OCR machines. The work is part of a 
larger ongoing effort on the text recogni- 
tion problem at SUNY/Buffalo. 

II THE BOTTOM-UP APPROACH 

The VA is a method of finding the 
word that maximizes likelihood over all 
possible letter combinations and not neces- 
sarily those in a lexicon; it is based on 
a dynamic programming formulation which 
leads to a recursive algorithm [3]. The 
method utilizes the characteristics of the 
OCR channel in the form of a table of con- 
fusion probabilities. Each entry of this 
tablerepresents the probability that the 
OCR channel assigns a given letter to an- 
other (possibly the same) letter due to 
ambiguities in the shape features used to 
classify shapes into character classes. 

The algorithm can be viewed as that 
of finding a maximum cost path through a 
directed graph called a trellis. The log- 
transitional probabilities are associated 
with the edges of the trellis and the log- 
confusion probabilities are associated 
with the nodes. The cost of a path is 
then the sum of all the edge and node 
values in the path. We us'e a computa- 
tionally improved version of the VA where 
the number of alternatives per letter is 
variable --these alternatives are determined 
by the letters that have the highest con- 
fusion probability. 

This method represents a purely bot- 
tom-up approach whose performance may be 
unacceptable due to the fact that the re- 
sulting strings do not necessarily belong 
to a lexicon. Our approach to improve 
performance is to use top-down contextual 
information, in the form of a lexicon of 
allowable input words, to aid the bottom- 
up performance of the VA. 

III LEXICAL REPRESENTATION 

The lexical data structure and method 
of access is critical to the efficiency of 
any text correction algorithm. Several 
alternative structures are available--the 
choice has to be based on the search stra- 
tegy of the algorithm and the memory 
available. 

A data structure that is suitable for 
determining whether a given string is an 
initial substring, or prefix, of a lexical 
entry is known as the -41. Since the 
VA proceeds by computingor a given 
length the most likely prefix, the trie is 
an attractive data structure. Essentially, 
the trie considers words as ordered lists 
of characters, elements of which are rep- 
resented as nodes in a binary tree. Each 
node has five fields: a token, CHAR: a 
word-length indicator array of bits, WL; 
and end of word tag bit, E; and two 
pointers labelled NEXT and ALTERNATE (see 
Fig. 2). 
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Fig. 2. Trie structure: (a) the fields of 
a typical record, and (b) trie of the 
lexicon: A, AN, AND, ANN, ANNOY, BAD, BADE 
BADGE, DAY, DID, FAD, FAN, FAR. 
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A node is a NEXT descendent if its 
token follows the token of its father in 
the initial substring of a lexical word. 
It is an ALTERNATE descendent if its token 
is an alternative for the father's given 
the initial substring indicated by the most 
immediate ancestor which is a NEXT descen- 
dent. Without loss of generality it is 
required that the lexical value of the to- 
ken of each ALTERNATE descendent be 
greater than that of its father. The end 
of word bit is set if its token and the 
initial substring given to reach the token 
comprise a complete dictionary word. The 
mth bit of the word length indicator array 
is set if the token is on the path of an m 
letter word in the trie. 

IV THE COMBINED APPROACH 

Simultaneous search of the VA trellis 
using a variable number of alternatives 
per input letter and the trie structure is 
controlled by a binary array A. This may 
be regarded as a blackboard through which 
the top-down and bottom-up processes com- 
municate [5]. Element A[j,i] is set to 1 
if the jth letter of the alphabet is a 
possible correction for the ith letter of 
the input word, i.e., log-confusion proba- 
bility exceeds a threshold t, and 0 other- 
wise. Thus the paths of the trellis that 
need to be evaluated are only those that 
begin at the l's of the first column of A 
and proceed through the l's of the sub- 
sequent columns. Before evaluating a path 
that proceeds from one column of A to the 
next column, that path is determined to be 
legal with respect to the trie. The com- 
putational complexity of the resulting 
algorithm is of the same order as the VA. 

V EXPERIMENTAL RESULTS 

To determine the performance and ef- 
ficiency of the algorithm with actual text 
and to compare this with variations of the 
VA, a data base was established and ex- 
periments were conducted. 

English text in the Computer Science 
domain 'iChapter 9 of Artificial Intel- 
licrence, P.H. Winston, Addison Wesley, 
1977) containing 6372.words was entered 
onto a disk file. Unigram and first order 
transitional probabilities were estimated 
from this source. A model reflecting 
noise in a communications channel was used 
to introduce substitution errors into a 
copy of this text and confusion probabili- 
ties were estimated from this source. A 
lexicon of 1724 words containing 12231 
distinct letters was extracted from the 
correct text and a trie was constructed. 
There were 6197 nodes in the trie and the 
average number of alternates for all nodes 
was 1.62. The storage required to load the 
program and its knowledge data structures 

were, in terms of CDC Cyber 174 words: 
program (lOK), trie (18K), confusion and 
transitional probability tables (1.5K). 

An example of garbled text is given 
in Fig. 3 and its correction produced 
with t=-11) is given in Fig. 4. It can 
be observed that the corrected text is 
significantly better than the text input 
to it. We also note the shortcomings that 
the words "lomputer" and "tayfr" were re- 
jected and the garbled words "bm" and "beg" 
were erroneously corrected to "by" and 
"but" (instead of "be" and "few) 
respectively, and the lexical word "come" 
was not corrected to "some". Rejections 
could be eliminated by decreasing the al- 
ternative selection threshold t, thereby 
allowing more possibilities for each 
letter. 

If we lcoi at what has prodused lcmputer imteliigence qo 

far, we see multiple lamers, each of which rests on primitives of 

ci.e naxd tayfr dowm, forminc a hierarcfical structure with a 

great deal interposed between the intelligent prphvem and the 

transistors which ultimatelu suppodt it. Figure 9-8 illustratss. 

All Of the cgmplexitu of one kevel is summarizfd abd 

distilled down to a bes simple asomic notions which axe the 

primitives oe the next lamer up. But with so much insulatiop, it 

ccnnot possmbly be that the detailfd nature of the lgwer levels 

can matter to what happens afoxe. This argues egainqt dhe idea 

that studning neurons cap lead to muah of an understanding about 

intelligence. Understandinw them beautifullu and entirelu cbn no 

more pvoduse an uncerstanding of intelligende than a complete 

undetstanding of transistors can uyeld insight into how a 

computer can understand scenes or reqpknds to English. Teople 

cannot think ib we pluci the neurons out of their brains but if 

we studu only neurons, we have onlm a slender chance of getting 

at intellkgence. 

Still, come critics argum that aomputerc cannkt bm 

intelligenx becavse digital hardware made of silicom can never do 

what braips made of neurons do. Their pocition is weakened bu 

the hierarchu argument and the lack of solid knowledge about what 

the ufthynkablm tanglad neuropil does. 

Fig. 3. Garbled text input to algorithm. 

To show the effects of differing 
levels of contextual information on per- 
formance at the optimum parameter setting 
of t=-11, i.e., where little additional 
performance improvement is observed by 
increasing the number of alternatives for 
each letter, the algorithm was run using 
only top-down information by setting all 
transitional probabilities equal and the 
algorithm was again run without the trie, 
thus using only the bottom-up information 
provided by the transitional probabilities. 
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The correction rates were 82% and 3556, 
respectively, both less than the 87% pro- 
vided b 
detaile B 

the combination approach. A-more 
discussion of experimental results 

is given in [6]. 

If we look at what has produced -------- intelligence so 

far, we see multiple layers, each of which rests on primitives of 

the next ----- down, forming a hierarchical structure with a 

great deal interposed between the intelligent program and the 

transistors which ultimately support it. Figure 9-8 illustrates. 

All of the complexity of one level is summarized and 

distilled down to a but simple atomic notions which are the 

primitives of the next layer up. But with so much insulation, it 

cannot possibly be that the detailed nature of the lower 1 eve1 s 

can matter to what happens above. This argues against the idea 

that studying neurons can lead to much of an understanding abotit 

i.Itelligence. Understanding them beautifully and entirely can n0 

snore produce an understanding of intelligence than a complete 

understanding of transistors can yield insight into how a 

computer can understand scenes or responds to English. People 

cannot think if we pluck the neurons out of their brains but if 

we study only neurons, we have only a slender chance of getting 

,at intelligence. 

Still, come critics argue that computers cannot by 
intelligent because digital hardware made of silicon can never I?O 

b;hat Llralns made of neurons do. Their position is weakened by 

the hierarchy arguncnt and the lack of solid knowledge about what 

the unthinkably tangled neuropil does. 

Fig.4. Corrected text produced by 
algorithm. 

VI SUMMARY AND CONCLUSIONS 

We have presented an algorithm for 
text recognition that is able to utilize 
top-down knowledge in the form of a lexi- 
con of legal words (represented as a trie), 
channel characteristics in the form of 
probabilities that observed letters are 
corruptions of other letters (confusion 
probability table) and two types of 
bottom-up information: letter shapes 
(represented as vectors) and the proba- 
bility of a letter when the previous 
letters are known (transitional proba- 
bility table). The algorithm exhibits a 
significant increase in correction rate 
over its predecessors that do not use 
lexical information, and shows no increase 
in the order of complexity. 
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