
KNOWLEDGE INTEGRATION IN TEXT RECOGNITION

Sargur N. Srihari and Jonathan J. Hull
Department of Computer Science
State University of New York at Buffalo
Amherst, New York 14226

ABSTRACT

The paper describes an algorithm based
on AI techniques for recognizing words of
printed or hand-written text--with the
technique developed also applicable to cor-
recting substitution spelling errors. The
algorithm effectively integrates bottom-up
information in the form of letter shapes,
letter transitional probabilities and
letter classification-error probabilities
together with top-down knowledge in the
form of a lexicon of legal words repre-
sented as a letter trie. Experimental re-
sults with the algorithm are reported for
the combined top-down and bottom-up ap-
proach and for each of the two approaches
individually.

I INTRODUCTION

The recognition of text that is ma-
chine printed with multiple fonts, hand-
printed, or written as cursive script
finds many applications including that of
office automation. Some present genera-
tion optical character readers [OCRs]
accept single font machine print or text
hand-printed under certain constraints.
Any deviation from these constraints re-
sults in rejection or a highly garbled
representation of the text.

Human beings perform better than present
OCRs by at least an order of magnitude in
error rate although their performance when
viewing a letter in isolation does not
significantly differ from OCR error rate.
This is attributed to effective use of con-
textual factors like letter sequences,
vocabulary, word-dependency, sentence-
structure and phraseology, style and sub-
ject matter as well as the associated pro-
cesses of comprehension, inference, asso-
ciation, guessing, prediction and imagina-

tion, all of which take place very na-
turally during the process of reading.
The example of Fig. 1 illustrates some as-
pects of this process. Although the let-
ters 'H' and 'A' in the words 'THE' and
'PAPER' are identically printed--thereby
leading to identical feature vectors--they
are easily distinguished by the human
reader due to the presence of surrounding
letters in the respective words. The last
word of the sentence is either 'CLIP' or
'CUP' which can be disambiguated by more
global knowledge, e.g., if the next sen-
tence were 'I NEED SOME COFFEE' then the
word in doubt is probably 'CUP'.

It is clear that if computer programs
are to reach expert human ability in text
recognition then they need to be able to
effectively integrate diverse contextual
knowledge sources about the text, as well
as knowledge about the kinds of textual
errors that are likely, i.e., characteris-
tics of the text transmission channel that
introduces errors. A number of programs
that utilize only a few knowledge sources
in text recognition are described in the
literature; tutorial surveys of these
methods have been made [1],[2]. Some of
these methods, viz., text recognition al-
gorithms, are directly applicable to a set
of image vectors representing characters
of text and others, viz., text error cor-
rection algorithms, are applicable only to
previously decoded text. A majority of
these methods can also be characterized
as those that are data-driven or bottom-up,
and those that are concept-driven or top-
down.

Data-driven algorithms proceed by re-
fining successive hypotheses about an in-
put string. An example is a program that
utilizes a statistical (Markovian) repre-
sentation of contextual knowledge in the
form of a table of transitional probabili-

NAND ME TftE PtWER CUP
Fig. 1. Identical patterns have different interpretations in different contexts.

--w---m--
*This work was supported by the National
Science Foundation Grant IST-80-10830.

148

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

ties, i.e., the probability of each letter
given that a letter sequence has pre-
viously occurred. Concept-driven algo-
rithms proceed with an expectation of what
the input string is likely to be and pro-
ceed to fit the data to this expectation.
Examples are algorithms that use an impli-
cit or explicit representation of a lexi-
con.

This paper describes an algorithm
that effectively merges a bottom-up refine-
ment process that is based on the utiliza-
tion of transitional probabilities and
letter confusion probabilities, known as
the Viterbi Algorithm [VA], together with
a top-down process based on searching a
lexicon that is applicable to text con-
taining an arbitrary number of character
substitution errors such as that produced
by OCR machines. The work is part of a
larger ongoing effort on the text recogni-
tion problem at SUNY/Buffalo.

II THE BOTTOM-UP APPROACH

The VA is a method of finding the
word that maximizes likelihood over all
possible letter combinations and not neces-
sarily those in a lexicon; it is based on
a dynamic programming formulation which
leads to a recursive algorithm [3]. The
method utilizes the characteristics of the
OCR channel in the form of a table of con-
fusion probabilities. Each entry of this
tablerepresents the probability that the
OCR channel assigns a given letter to an-
other (possibly the same) letter due to
ambiguities in the shape features used to
classify shapes into character classes.

The algorithm can be viewed as that
of finding a maximum cost path through a
directed graph called a trellis. The log-
transitional probabilities are associated
with the edges of the trellis and the log-
confusion probabilities are associated
with the nodes. The cost of a path is
then the sum of all the edge and node
values in the path. We us'e a computa-
tionally improved version of the VA where
the number of alternatives per letter is
variable --these alternatives are determined
by the letters that have the highest con-
fusion probability.

This method represents a purely bot-
tom-up approach whose performance may be
unacceptable due to the fact that the re-
sulting strings do not necessarily belong
to a lexicon. Our approach to improve
performance is to use top-down contextual
information, in the form of a lexicon of
allowable input words, to aid the bottom-
up performance of the VA.

III LEXICAL REPRESENTATION

The lexical data structure and method
of access is critical to the efficiency of
any text correction algorithm. Several
alternative structures are available--the
choice has to be based on the search stra-
tegy of the algorithm and the memory
available.

A data structure that is suitable for
determining whether a given string is an
initial substring, or prefix, of a lexical
entry is known as the -41. Since the
VA proceeds by computingor a given
length the most likely prefix, the trie is
an attractive data structure. Essentially,
the trie considers words as ordered lists
of characters, elements of which are rep-
resented as nodes in a binary tree. Each
node has five fields: a token, CHAR: a
word-length indicator array of bits, WL;
and end of word tag bit, E; and two
pointers labelled NEXT and ALTERNATE (see
Fig. 2).

I

4 . , . 9

B 00111 0 A 00111 0 D 00111 1 E 00011 1

1 y-4 - -3 l -+ f .

I

I
r

F 00100 0
r

A 00100 0' 3 00100 1

. c . c- .
L

(4 (b)

Fig. 2. Trie structure: (a) the fields of
a typical record, and (b) trie of the
lexicon: A, AN, AND, ANN, ANNOY, BAD, BADE
BADGE, DAY, DID, FAD, FAN, FAR.

149

A node is a NEXT descendent if its
token follows the token of its father in
the initial substring of a lexical word.
It is an ALTERNATE descendent if its token
is an alternative for the father's given
the initial substring indicated by the most
immediate ancestor which is a NEXT descen-
dent. Without loss of generality it is
required that the lexical value of the to-
ken of each ALTERNATE descendent be
greater than that of its father. The end
of word bit is set if its token and the
initial substring given to reach the token
comprise a complete dictionary word. The
mth bit of the word length indicator array
is set if the token is on the path of an m
letter word in the trie.

IV THE COMBINED APPROACH

Simultaneous search of the VA trellis
using a variable number of alternatives
per input letter and the trie structure is
controlled by a binary array A. This may
be regarded as a blackboard through which
the top-down and bottom-up processes com-
municate [5]. Element A[j,i] is set to 1
if the jth letter of the alphabet is a
possible correction for the ith letter of
the input word, i.e., log-confusion proba-
bility exceeds a threshold t, and 0 other-
wise. Thus the paths of the trellis that
need to be evaluated are only those that
begin at the l's of the first column of A
and proceed through the l's of the sub-
sequent columns. Before evaluating a path
that proceeds from one column of A to the
next column, that path is determined to be
legal with respect to the trie. The com-
putational complexity of the resulting
algorithm is of the same order as the VA.

V EXPERIMENTAL RESULTS

To determine the performance and ef-
ficiency of the algorithm with actual text
and to compare this with variations of the
VA, a data base was established and ex-
periments were conducted.

English text in the Computer Science
domain 'iChapter 9 of Artificial Intel-
licrence, P.H. Winston, Addison Wesley,
1977) containing 6372.words was entered
onto a disk file. Unigram and first order
transitional probabilities were estimated
from this source. A model reflecting
noise in a communications channel was used
to introduce substitution errors into a
copy of this text and confusion probabili-
ties were estimated from this source. A
lexicon of 1724 words containing 12231
distinct letters was extracted from the
correct text and a trie was constructed.
There were 6197 nodes in the trie and the
average number of alternates for all nodes
was 1.62. The storage required to load the
program and its knowledge data structures

were, in terms of CDC Cyber 174 words:
program (lOK), trie (18K), confusion and
transitional probability tables (1.5K).

An example of garbled text is given
in Fig. 3 and its correction produced
with t=-11) is given in Fig. 4. It can
be observed that the corrected text is
significantly better than the text input
to it. We also note the shortcomings that
the words "lomputer" and "tayfr" were re-
jected and the garbled words "bm" and "beg"
were erroneously corrected to "by" and
"but" (instead of "be" and "few)
respectively, and the lexical word "come"
was not corrected to "some". Rejections
could be eliminated by decreasing the al-
ternative selection threshold t, thereby
allowing more possibilities for each
letter.

If we lcoi at what has prodused lcmputer imteliigence qo

far, we see multiple lamers, each of which rests on primitives of

ci.e naxd tayfr dowm, forminc a hierarcfical structure with a

great deal interposed between the intelligent prphvem and the

transistors which ultimatelu suppodt it. Figure 9-8 illustratss.

All Of the cgmplexitu of one kevel is summarizfd abd

distilled down to a bes simple asomic notions which axe the

primitives oe the next lamer up. But with so much insulatiop, it

ccnnot possmbly be that the detailfd nature of the lgwer levels

can matter to what happens afoxe. This argues egainqt dhe idea

that studning neurons cap lead to muah of an understanding about

intelligence. Understandinw them beautifullu and entirelu cbn no

more pvoduse an uncerstanding of intelligende than a complete

undetstanding of transistors can uyeld insight into how a

computer can understand scenes or reqpknds to English. Teople

cannot think ib we pluci the neurons out of their brains but if

we studu only neurons, we have onlm a slender chance of getting

at intellkgence.

Still, come critics argum that aomputerc cannkt bm

intelligenx becavse digital hardware made of silicom can never do

what braips made of neurons do. Their pocition is weakened bu

the hierarchu argument and the lack of solid knowledge about what

the ufthynkablm tanglad neuropil does.

Fig. 3. Garbled text input to algorithm.

To show the effects of differing
levels of contextual information on per-
formance at the optimum parameter setting
of t=-11, i.e., where little additional
performance improvement is observed by
increasing the number of alternatives for
each letter, the algorithm was run using
only top-down information by setting all
transitional probabilities equal and the
algorithm was again run without the trie,
thus using only the bottom-up information
provided by the transitional probabilities.

150

The correction rates were 82% and 3556,
respectively, both less than the 87% pro-
vided b
detaile B

the combination approach. A-more
discussion of experimental results

is given in [6].

If we look at what has produced -------- intelligence so

far, we see multiple layers, each of which rests on primitives of

the next ----- down, forming a hierarchical structure with a

great deal interposed between the intelligent program and the

transistors which ultimately support it. Figure 9-8 illustrates.

All of the complexity of one level is summarized and

distilled down to a but simple atomic notions which are the

primitives of the next layer up. But with so much insulation, it

cannot possibly be that the detailed nature of the lower 1 eve1 s

can matter to what happens above. This argues against the idea

that studying neurons can lead to much of an understanding abotit

i.Itelligence. Understanding them beautifully and entirely can n0

snore produce an understanding of intelligence than a complete

understanding of transistors can yield insight into how a

computer can understand scenes or responds to English. People

cannot think if we pluck the neurons out of their brains but if

we study only neurons, we have only a slender chance of getting

,at intelligence.

Still, come critics argue that computers cannot by
intelligent because digital hardware made of silicon can never I?O

b;hat Llralns made of neurons do. Their position is weakened by

the hierarchy arguncnt and the lack of solid knowledge about what

the unthinkably tangled neuropil does.

Fig.4. Corrected text produced by
algorithm.

VI SUMMARY AND CONCLUSIONS

We have presented an algorithm for
text recognition that is able to utilize
top-down knowledge in the form of a lexi-
con of legal words (represented as a trie),
channel characteristics in the form of
probabilities that observed letters are
corruptions of other letters (confusion
probability table) and two types of
bottom-up information: letter shapes
(represented as vectors) and the proba-
bility of a letter when the previous
letters are known (transitional proba-
bility table). The algorithm exhibits a
significant increase in correction rate
over its predecessors that do not use
lexical information, and shows no increase
in the order of complexity.

REFERENCES

[I] Peterson, J.L., "Computer programs
for detecting and correcting spel-
ling errors," Communications of the
ACM, 23, 1980, pp. 676-687.

[2] Hall, P.A.V., and G.R. Dowling,
"Approximate string matching," Com-
puting Surveys, 12, 1980, pp. 381-402.

[3] Neuhoff, D.L., "The Viterbi algorithm
as an aid in text recognition, 11 IEEE
Trans. Inform. Theory, IT-21, 1975,
PP. 222-228.

[4] Knuth, D.E., The art of computer pro-
gramming vol. 3: sorting and search-
ing, Reading, MA: Addison-Wesley,
1973.

[5] Goodman, G., and R. Reddy, "Alterna-
tive control structures for speech
understanding systems," in Trends in
speech recognition, W.A. Lea, ed.,
Englewood Cliffs, NJ: Prentice-Hall,
1980, pp. 234-246.

161 Srihari, S.N., J.J. Hull and R.
Choudhari, "An. algorithm for in-
tegrating diverse knowledge sources
in text recognition," TR-192. Dent.
of Computer Science, SUXY/BuffaG-
1981.

151

