
ERROR DETECTION AND RECOVERY IN A DYNAMIC PLANNING EZNVIRONMENT

In this paper a set of techniques for error detection and
recovery is proposed. These techniques augment a plan-

Blake Ward and Gordon McCalla

Dept. of Computational Science
University of Saskatchewan

Saskatoon, Saskatchewan, S7N OWO

ABSTRACT

ning system (the ELMER system) which already has many
features for preventing execution errors but has few
features for handling errors that can’t be prevented. The
error handling techniques presented in this paper depend
for their effectiveness on the close co-operation of the plan-
ning, execution and knowledge base components of the sys-
teti, and especially iii’&e use of knowledge learned from
the earlier execution of other plans.

i. INTRODUCTION

For the past several years we have been developing a
geographic planning system which takes the view that plan-
ning, execution, and knowledge acquisition are inseperable
components of a planner operating in a dynamic environ-
ment. The ELMER system (McCalla et al
[1978],[1979],[1982]) uses a unique route-splicing planning
methodology to produce plans to take a taxi driver (ELMER)
to a destination in a small (simulated) city (Figure 1) which
contains dynamic obstacles such as cars, pedestrians, etc.
These obstacles are anticipated well enough in the current
system that error recovery in seldom needed. However, for
some dynamic situations, errors will happen and this paper
explores how the ELMER system can be extended to handle
error recovery.

Other research besides ours has emphasized the impor-
tance of handling execution errors. HACKER (Sussman
[1973]) for example produces plans and then debugs them.
Srinivas [1977] categorizes errors which occur in the execu-
tion of robot plans and suggests several approaches to
correcting them. The incremental planning system of
Hayes-Roth and Hayes-Roth [1979] suggests that people
don’t produce perfectly structured plans and then execute
them, but take a much more integrated approach where
plans are produced and then modified and corrected
through simulated execution. Other systems discuss the
importance of execution monitoring and error correction,
but don’t necessarily suggest tney be done automatically.
One such system is the interactive planning system of
Robinson and Wilkins [1980] where monitoring and execution
are done by the user and not the planner. Thus the addi-
tion of an error recovery capability to the ELMER system is
important, and the techniques outlined here may have
wider applicability than just ELMER.

2THEELbfERSYSTEM

The ELMER system has three major components: the
planner, the Map, and the Executor, as shown in Figure 2.

TBb Exacutbr f.Bt%iVes titidom of low-level Bensorp informa-
tion from the geographic microworld indicating the pres-
ence of both permanent features (stop signs, street signs)
and transient features (cars, pedestrians) at varying dis-
tances from ELMER. It attempts to correlate this window
information with the hierarchical plan it is trying to exe-
cute. For example, the core plan in Figure 3, (ie. the num-
bered plans headed by plan 23) represents a plan to go
from the intersection Retier 8 Winograd to Schubert @
Brachman (streets in a mythical city in which ELMER
“exists”). Plan 23 breaks down into sub-plans 24 and 25
(representing traversals of smaller portions of the path)
and these in turn break down to sub-sub-plans 120, 121 and
122 and 123, 124 and 125 respectively. The Executor
activates the left-most branch of the hierarchy (23, 24, and
120) and looks for window information which allow transi-
tions (eg. Past Reiter 8 Wkograd) to be made from any of
these active plans. For example, if At Reiter @ Schubert is
recognized (say by the presence of an appropriate street
sign), the new active branch of the hierarchy will become
23. 24, and 123. Certain predictable errors which could
arise if stop signs or red lights or the like were missed can
be prevented by secondary plans such as A,B,...,H which act
in parallel to the core plan throughout its execution.

Once the plan has been successfully executed, the plan
is added as a route to the map. Routes are just plans
instantiated by attaching the window seen during execution
beneath the primitive plans where they were “seen”. Cer-
tain information (such as speed liiits, directions, dis-
tances, etc.) can be abstracted into higher level plans, as
well, and information about how this new route connects (
associates or inassociates) to other routes is also added.
Intuitively, a route associates into another route if it is
“easy” to get from the first route to the second. At the
same time the second route is said to inassociate to the
first.

Such associations/inassociations form the basis of the
Planner’s ability to create plans. When presented with the
request to “go from A to B”, the Planner first of all looks to
see if the Map has a route already connecting A to B (ie.
ELMER has made this trip before). Note that this route only
needs to b-: ,art of a previous trip--extra portions before
A or after d are ignored. If not, it looks to see if there is a
route connecting some route that A associates into to some
route inassociated to B. (ie. if it is easy to get to some
place close to A from which it is easy to get to some place
close to B). If not, associationsjinassociations at higher
levels of detail are tried, and if this still fails, the Planner
attempts to splice together two routes, the first of which
cwLtains A, the second of which contains B and which mutu-
ally intersect at some point. Once an appropriate plan has
been concocted it is passed down to the Executor.

172

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

There are many aspects of the ELMER architecture
which have been ignored (eg. secondary plans) since they
aren’t needed for the ‘discussion to ehsue. Further dettils
can be found in McCalla et al [1982].

3. ERROR HANDiJNG

Error handling in the original ELMER system was down-
played as a problem. Instead, secondary plans tried to
prevent errors from ever occurring by explicitly predicting
certain dynamic situations (red lights, pedestrians in the
way, etc.). There are many errors, though, that can’t be
explicitly predicted - running into unexpected road block-
ages, missing some vital road sign, using a route that
doesn’t quite go as expected. These kinds of errors will
occur with increasing frequency as the Map is extended to
infer hypothetical routes and as realistic resource con-
straints are placed on planning and execution.

3.1 Error Detection

The first problem to be tackled when trying to recover
from execution error is even recognizing that an error has
occurred. This is non-trivial in the ELMER system (as it
often is in the real world). The difficulty is in determining
when a transition out of a plan has not occurred as
expected. There are two basic approaches to error detec-
tion:

i. the Planner can explicitly add error transitions to
plans, the ELMER analogue to saying “if you see the
drug store on your right you’ve gone too far”; or

ii. the Executor can monitor the execution of the plan
watching for any of several conditions that indicate an
error may have occurred.

Explicitly added error transitions come from two sources.
The primary source comes as a residue of the Planner’s
route splicing methodology. Basically, if we wanted a plan
to go from Wimp-ad @ &hank to Reiter 8 Schubert and the
Map currentiy contained the routes shown in Figures 3 and
4 then the resulting plan would be that shown in Figure 5.
Notice that in splicing the two routes together, the Planner
has added two new transitions that indicate error condi-
tions. The Plahner does have to use some care in adding
error transitions since it is possible that two routes that are
being spliced overlap and share a common sub-route. Since
the overlapping portion is being used as a part of the final
plan, it cannot be added as an error transition as well.

Another source of explicit error transitions comes as a
result of errors made in the exec‘utioh of a previous plan.
When the old plan is being added to the)Map, it is relatively
straightforward to abstract a record of the erroneous path
previously traversed and tack it on to the old plan as a
ti-ansitioh from the sub-plan where the error originated.
The planner can then pass any such relevant error transi-
tions down to the Executor so that the error can be
instantly recognized in the future.

If the error can’t be recognized via explicit error transi-
tions, it must be detected by monitoring plan execution.
One approach is to compare the windows being seen during
execution to those seen on previous traversals of the same
route. To accomplish this, the Executor must have access
to windows (or information abstracted from windows) that
the Map has kept after previous traversals of the route. As
a plan is executed, each window can be matched with the
appropriate small set of previously seen windows beneath
the current primitive plan (or can be searched for features
corresponding to more abstract information). Domain

Spec%c her&&s need to be employed iii ‘or’der tb ‘hi&‘&
only the relevant features. In the ELMER world, permanent
features such as street signs and and buildings are impor-
tant while more transient features such as other cars and
pedestrians ;are\ not. If crucial features don’t match then
an error probably has occurred.

An alternate approach to error detection involves adding
a distance attribute to each go-along box in the Map that
records the total length of the stretch of road traversed by
that pian box. when the distance travelled by ELMER since
the transition into that box exceeds the recorded distance
an error has definitely occurred.

3.2 &or kecovery

Once the error has been detected, recovery must take
place. This largely boils down to trying to figure out where
ELMER is now. If all else fails, ELMER can ask the
dispatcher, but there are several heuristic approaches to
solving this problem. One approach (somewhat like the
plan patching of Srinivas [1977]) suggests retracing the
steps taken when the error occurred in order to get back to
the original plan. In the case of explicit error transitions,
this may be fairly straighforward since the erroneous path
is already part of the plan and need only be reversed in
order to get back on track. Of course, one-way streets may
foil this attempt, so there are no guarantees even in this
simple case. Retracing may also be possible .by abstracting
primitive level plans from windows seen as the erroneous
path was undertaken and then reversing the order of these
plans. Not every window will contribute to a low-level plan
nor is it always the case that a needed piece of information
will be in a window, but the approach will often work. Once
the path has been retraced, getting to the original

destination is usually straightforward since the original plan
can now be re-activated, unless, of course, road closures or
the like continue to make the original plan inappropriate.

Under, such circumstances or in situations where it is
impossible to retrace the wrong steps taken or when such
retracii-ig is ii?ipractic&jle (eg. 6iFiiig to the l’ehgth ofzn;ii-e
to achieve it), other methods must be sought. One
approach is to find a nearby location which is in the Map,
try to get there, and then ask the Planner to re-plan a path
to the destination. If the current location corresponds to
an intersection known to the Map, then the problem is
trivial --just re-plan from there.

If not, ELMER is (in a sense) lost in that his position at
the primitive levels is unknown to the Map. However, win-
dows attached to the primitive level plans may be recogniz-
able. Since ELMER prob&ly hasn’t gone far wrong, it is
possible to look at routes associated/inassociated to the
last primitive plan ELMER is known to have been in to see if
windows attached to these nearby plans match what is seen
at the current location. If not, then the hierarchical struc-
ture of a plan can be useful since it can be viewed as a plan
traversing ever larger regions as you move up the hierar-
chy. Presumably ELMER is still within a region traversed at
some level by the current plan (unless he has gone very
wrong indeed), and this information can be used to avoid
searching the Map’s entire repetoire of windows. Using this
intuition, it is possible to move up the hierarchy from the
primitive level to a more abstract levels.
Associations/inassociations can be taken at the higher lev-
els and all windows attached to primitive descendents of
such associated/inassociated routes can be similiarly
matched to the current location for recognizable features.
The process can continue until no further abstraction is

173

possible or until a recognizable location is found. In the
latter case, a plan to get from the primitive route contain-
ihg the matching window to the ‘destination can be readily
constructed.

In the former case, the current location is simply not in
the Map (even by inference) so all that is left is to try to
explore for some recognizable location. Exploration needs
a direction to explore in and a set of termination conditions
to stop exploration. Both can be obtained from the last
known location in the current plan. The direction is merely
the direction of the destination relative to the last known
lot ation. Presumably (although not always) ELMER hasn’t
gone far enough off course to alter this relative direction.
The termination conditions are obtained by taking all tran-
sitions from routes near the last known location (ie. the
routes generated above although the abstraction process
can be stopped somewhat earlier if a smaller radius of
exploration is desired). The exploration phase then
proceeds with ELMER heading in the direction indicated
(insofar as this is possible) until one of the transition labels
matches, indicating that he is back in “known territory”.
Re-planning can then occur from that location.

The ability to explore turns out to be useful in other
situations as well, in particular planning. If the Planner is
unable to splice together two routes to form a plan, then it
can stic!c an exploration sub-plan in to bridge the gap pro-
vided it knows the relative direction of the sub-routes being
so bridged. This is non-trivial, unfortunately, unless the
Map is extended to have some sort of global co-ordinate
system. Such an extension is being designed, as are other
Map extensions to allow the inference of various kinds of
hypothetical routes based on categorizing various areas of
the city as .+ or crescent or the like (as is done in Kuipers
[19?7]). B t u a discussion of these aspects is beyond the
scope of this paper.

In conclusion this paper illustrates the usefulness of an
integrated view to the problem of recovering from execu-
tion errors. The uniform structure of routes and plans is
important when trying to find ELMER’s location or ter-
minate an exploration. It is possible to
associate/inassociate to nearby routes from the current
plan which when combined with the hierarchical structilre
allows a focussing on relevant Map routes. Hierarchical
plan structure (absent for example from Srinivas’ [i’977]
system) is thus useful in error handhng.

The close co-operation of the Planner, Executor and Map
is also useful. The Planner helps the Executor by providing
explicit error transitions to help the Executor determine
when errors have occurred. The Executor helps the
Planner by being able to retrace steps and explore without
needing re-planning; it also helps out by being able to exe-
cute exploration sub-plans to bridge unplannable gaps. But
the main interaction occurs between the Executor and the
Map where the Map’s summaries learned from previous
experiences, prove invaluable. The Map provides window
information to the Executor to help execution monitoring
and to help clctermine ELMER’s location once he gets lost.
It also provides surnmaries of previous execution errors in
order that the Executor can explicitly avoid these in the
future.

Apart from the occasional resort to domain specific
heuristics (eg. in judgin, 0 the relevence of window informa-

t-estricted to the geographic microworld. We are currently
exploring other applications to test the generality of these
techniques.

5. ACKNOWLEDGMENTS

We would like to acknowledge the financial support of the
National Sciences and Engineering Research Council of
Canada and the University of Saskatchewan.

6. REFERENCES

[l] Hayes-Roth, B. and Hayes-Roth, F. (1979). A Cognitive
Model of Planning. Cogntiive Science 3, October-
December.pp. 275-310.

[2

II3

Kuipers, B.J. (1977). Representing Knowledge of Large
Scale Space. AI Lab. AI-TR-418, MIT, Cambridge,
Mass.

McCalla, G.I., Schneider, P.F., Cohen, R. & Levesque,
H. (1978). Investigations into Planning and Executing
in an Independent and Continuously Changing
Microworld. AI Memo 78-2, Department of Computer
Science, University of Toronto, Ontario.

[4] McCalla, G.I. & Schneider, P.F. (1979). The Execution
of Plans in an Independent Ilynamic blicroworld.
Proceedings: Sixih internalional Joint Conference of
ArtQiciaE Intelligence, Tokyo, Japan.

[5] McCalla, G.I., Reid, L. & Schneider, P.F. (1982). Plan
Creation, Plan Execution and Knowledge Acquisition in
a Dynamic Microworld. International Journal of Man-
Machine Studies 76, pp. 89-112.

[6] Robinson, A.E. & Wilkins, D.E. (1960). Representing
Knowledge in an Interactive Planner. Proceedings:
J%st Anmmi Nutiond Conf er-ence on Artificial liztelli-
gence, Stanford, California.

[7] Srinivas, S. (1977,. 1 Error Recovery in Robot Systems,
CIT, Pasadena, California.

[8] Sussman, G. J. (1973). A Computational Model of Skill
Acquisition. AI Lab. AI-TR-297, MIT, Cambridge, Mass.

lnstant!oted plons I

Customer goals

L Windows (“sensory’ mformotton from mlcroworld)

FIG. 1. Basic system architecture.

tion) most of the error recovery techniques are not

174

Schonk Stnp

Kulpers Crescent

FIG. 2. Simon City.

.Corthy

Figure 3 -

I 86

Figure 4 - Another Route

7zi-G+&i*
/ _

!87
'00 from !Jinoarad 0 Schank'

I 24
at o from ReiterO!dinograd

to Winoqrad @ Reiter Winograd @ Reiter

;I/{\

/

I / wi \

i
/

2 '\
/

0
'1

0 :
Kg

',
/

gi
?

\,
*I;

-0 530

;I

(jTI# 7'
ZI =!

d
=I

2,
31

error

rl

Figure 5 - Exnlicit Error Transitions

175

