
PANDORA - A Program for Doing Commonsense Planning
m Complex Situations*

Joseph Faletti

Computer Science Division
Department of EECS

University of California, Berkeley
Berkeley, California 94720

Abstract

A planning program named PANDORA (Plan ANalyzer
with Dynamic Organization, Revision, and Application)
has been developed which creates plans in the common-
sense domains of everyday situations and of a Unix**
Consultant using hierarchical planning and meta-
planning. PANDORA detects its own goals in an event-
driven fashion, dynamically interleaving the creation,
execution and revision of its plans.

1. IIlt.roduction.
Most early work in Al problem solving has used sim-

ple control structures to work in restricted or special-
ized domains {e.g., Fikes and Nilsson (1971), Newell and
Simon (1972), Sussman (1975)), although some recent
work has moved to common-sense domains (Rieger
(1975), Hayes-Roth and Hayes-Roth (1979), Carbonell
(1978), Cohen and Perrault (1979)) and more powerful
control structures (Sacerdoti (1977), Genesereth (1978),
Stef?k (1980)).

We have developed a theory of planning described in
Wilensky (1981) which suggests that the design of a plan-
ning program should include:

1. Shared knowledge with a planning story under-
stander.

2. Use of common-sense domains.

3. Use of hierarchical planning and meta-planning.

4. Detection of its own goals in an event-driven fashion.

5. Dynamic interleaving
revision of plans.

of the creation, execution and

2. PANDORA - Commonsense Planning in Complex
Situations.

PANDOR,A {Plan ANalyzer with Dynamic Organization,
Revision, and Application) is a program incorporating the
features described. It is implemented in PEARL, an Al
programming language developed at Berkeley (Deering,
Faletti. and Wrlensky, (1981) and (1982)). PANDORA uses
the same planning knowledge as the newest version of
PAMELA, its story understanding counterpart, imple-
mented by Peter Norvig, PANDORA and PAMELA also
share an inference and frame-based memory package of
knowledge and routines which perform all low-level pro-
cessing of input and instantiating of frames.

* This research was sponsored in part by the OfTice of Naval Research
under contract N00014-6&C-0732 and the National Science Foundation
under grant MCS7906543.

3. Examples from Two Domains.
PANDORA has been applied to two commonsense

domains. PANDORA’s original domain was that of every
day human situations. For example, one task PANDORA
plans for involves the task of retrieving the morning
newspaper when it is raining. Given the input:

i’Iime0fDay (Time Morning))

- It is raining.
iWeather (Object (Outside)) (Condition Raining))

PANDORA detects its normal morning goal of knowing
what is going on in the world, modifies it to adjust for the
rain, and produces the following plan:

; Put on a raincoat.
((PutOn (Actor (Ego)) (Object (Raincoat)))
; Go outside.
(PTrans (Actor (Ego)) (Object (Ego)) (To (Outside)))
- Pick up the newspaper.
iG;;s,;tor (Ego)) (Object (Newspaper)))

(PTrans (Actor (Ego)) (Object (Ego)) (To (Inside)))
* Read the newspaper.
&ad (Actor Ego) (Object (Newspaper))))

That is, PANDORA figures out that she has to put on a
raincoat before going outside, something that she does
not normally do to retrieve the newspaper.

In order to generate this plan, PANDORA must

1. Notice that going outside this morning would get her
wet and that this is a state she wants to prevent.
This is accomplished by the Noticer and the Goal
Detector.

2. Detect the resulting goal conflict between her plan
of going outside to get the newspaper and the Stay
Dry preservation goal. The Goal Detector does this.

3. Find a meta-plan which will find a way to alleviate
this problem. This is done by the Plan Selector.

4. Execute this meta-plan which must find the Wear-
Raincoat plan and modify the original plan. This is
done by the Executor.

PANDORA is also being applied to the domain of
using the Unix** operating system. The Unix domain was
chosen so that PANDORA could be used as a problem-
solver component of the natural language Unix Consul-
tant UC (Wilensky (1982)) now being developed at Berke-
ley. UC will call on PANDORA whenever the question
presented involves more complicated planning.

l * Unix is a trademark of Bell Laboratories

185

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

For example, if we tell PANDORA that PAMELA has a
new electronic mail address by asserting

(MailAddress (Person PAMELA)
(Where (Address (String (“kim:pamela”)))))

into the data base, and later enter (Type (Actor Vi) (To
Ego)

(Message (String (” out of disk space”))))

when PANDORA is waiting for feedback from the write
command in the editor, PANDORA generates and exe-
cutes plans which result in the following steps being exe-
cuted:

* Edit the Addresses file.
iStartUp (Program Editor))
(MakeChanges (File Addresses)

(Changes (AddAddress 0)))

*Attempt to write the file but fail.
iType (Text (String (“:w”

(FileName (File Addresses))
(Return))))))

(VerifySuccess))) ;- Reads error message from editor.

- Plan to get rid of the problem.
1. Try to delete unneeded files but fail to find enough.
(DeleteUnneededFiles (Actor Ego))

* Temporarily save file in temporary space.
iType (Text

(String (“:w”
(FileName (File (“/usr/tmp/pandora”)))
(Return))))))

(VerifySuccess)))

- Save file more permanently.
(Mail (To Ego) (Content (File “/usr/tmp/pandora”)))

* Ask system manager for more disk space.
&ail (TO System)

(Content (Message
(Request (MoreDiskSpace)))))

(Quit (Program Editor))

That is, PANDORA figures out first that she should edit
her address book. When during the write command, she

gets an “out of disk space” error message from the edi-
tor, she determines that she should try to delete some
unneeded files and try the write command again. Failing
this, PANDORA finds somewhere else to save the file, i.e.,
in temporary flle space. However, since temporary flies
are not secure from removal by other users, PANDORA
predicts eventual failure of this goal and finds a more
permanent solution which is to mail the file to herself.
This manages to save the file for the moment but does
not get rid of the problem. PANDORA then generates a
plan to acquire more disk space which is to ask the
powers that be for more.

Note that for this example the above is the sequence
of actions of PANDORA, rather than a plan generated in
its entirety before execution. This is necessary because
PANDORA must handle a goal conflict during execution
rather than before, since the problem does not arise
until then. This example also requires PANDORA to:

1. Resolve a goal conflict and then retry a plan.
handled by the meta-plan doing the repair.

This is

3. Construct a temporary plan {that is, one likely to
fail eventually) in order to carry out a more per-
manent one.

4. The Overall Structure.
There are three types of objects which PANDORA’s

control structure must deal with: external events, goals,
and plans. The top level of control is simply a loop which
deals with these in turn:

1. If there is an external event to process it is dealt
with. This process might potentially involve the
inference system, the Noticer and the Goal Detec-
tor.

2. If there is none, then plans are chosen for any
unplanned goals. This is carried out by the Plan
Selector and Projector.

3. If there are no goals to plan, then the plan at the
top of the plan queue is executed. This is carried
out by the Executor.

5. Inference,
to Input.

Noticing and the Goal Detector: Reacting

In the rain example, PANDORA reacts to external
input representing the fact that it is morning and raining
outside by detecting the frames and associated goals
that apply to these situations. In this first stage, all of
the significant work has been done by the low-level infer-
ence and frame invocation processes in conjunction with
two important parts of PANDORA, the Noticer and the
Goal Detector. The memory and frames package
automatically watches for events that should invoke
frames, choosing them based on the structure of each
frame. (Exactly which pieces of a frame should be
allowed to invoke it is still undecided but for PANDORA’s
situations the connections have been obvious so far.)
Here the “morning” frame and the “rainy day” frame are
invoked. Associated with each frame which describes a
situation (as opposed to an action, event or state) is a
list of goals tha.t PANDORA normally has when that situa-
tion arises. The morning frame includes PANDORA’s goal
of knowing what is going on in the world.

Also associated with each frame is a set of inference
rules which might apply when that frame is active. Hear-
ing that it is raining outside invokes the “rainy day”
frame which includes an inference rule to the effect that
if someone goes outside they will get wet. In the case of
remembering PAMELA’s address, PANDORA has an infer-
ence rule which says that when it hears a friend’s
address, it should remember it.

6. The Plan Selector: Choosing and Installing Plans.
Whenever there is no more input, PANDORA’s Plan

Selector proceeds to plan for any goals it has. Consider-
ing that the main thrust of PANDORA is planning, the
actual planning algorithm control structure is mislead-
ingly simple for most goals. For each goal, this involves:

1. Choose the normal plan, if any.

2. Check it for conflicts with other plans by projecting
its effects.

3. If it is all right, install it.

For example, PANDORA’s normal plan for the “find out
about the world” goal is to read the morning newspaper,
which involves going outside, picking up the newspaper,
and returning inside to read it. Her normal plan for
remembering an address it to store it in its on-line

2. Handle a failure of the normal plan for getting more
disk space by tiding another plan. This is done by
the Plan Selector.

address book using the editor.

PANDORA always uses the normal plan for a goal
unless it fails in some way or causes a goal conflict with
some other goal. Since the emphasis of this work is on
commonsense goals and plans, I consider mostly goals
whose plans are well-known and require very little
thought to select. Even for the more complicated situa-
tions of goal conflicts which are common, the above algo-
rithm works.

One reason for this deceptive simplicity is the fact
that most of the planning knowledge and therefore most
of the planning algorithms are represented as meta-
plans which accomplish meta-goals of the planning pro-
cess. Thus the meat of the planning is buried in the
knowledge base which must be relatively large for this
type of planning. However, although it is large, it is quite
broadly applicable to many classes of specific goals.

Meta-goals are treated just like any other goals.
Thus, for example, PANDORA also looks for a normal plan
for the Resolve Goal Conflict meta-goal detected during
simulation of the Retrieve Newspaper plan (see the next
section for more on this). In this case PANDORA finds
and executes the meta-plan Replan which looks for a
plan that avoids the conflict. Replan finds that wanting
to go outside without getting wet can be accomplished by
the plan of putting on a raincoat first. Replan is a meta-
plan rather than just an ordinary plan because it
involves using general planning knowledge to find a
modification to the current plan.

7. The Projector and Noticer: Simulatirq the Chosen
Plan.

PANDORA gives each plan a cursory check for
conflicts by simulating the plan (currently only the top
level of the plan is done), recording the effects of each
step in a data base of events whose occurrence are pro-
jected into the future. These events are subject to the
usual inference processes, but any results are recorded
in this future data base.

For example, in the rain example, the planned act of
going outside causes a problem. The effect of this act
which is asserted into the future data base is that PAN-
DORA expects to be outside in the near future. This
causes the inference rule from the rainy day frame to
infer that PANDORA will get wet.

Included in PANDORA’s knowledge base are themes
{collections of goal states organized under one property
of an actor (Schank and Abelson (1977)) which organize
sets of states which are to be maintained. One is the
Preserve Health theme which includes the requirement
that PANDORA remain dry and keep well fed. For each of
these goals, the Noticer is informed that if any of these
is violated, the Goal Detector should be informed. The
Goal Detector will examine the state and generate a
preservation goal.

Note that it is not good enough to simply notice that
a state that was in the data base has changed. Instead,
each state which is a goal state or a precondition of an
intended plan is marked as being such. Then, each time
a state change is inferred, such a mark is checked for
and if it is so marked, the Goal Detector is informed.

If the culprit is an act the Goal Detector also knows
that this is a goal conflict and generates the meta-goal of
resolving this conflict. Meta-goals are treated like every
other goal in PANDORA -- they are stacked and the nor-
mal planning process is performed on them.

Before handling a goal that is generated during
simulation, PANDORA currently projects all of the steps
of the currently proposed plan. However, note that after
the simulation, the top level control structure implies
that if there are still goals to be planned, the plan cannot
be executed yet. In particular, any Resolve Goal Conflict
meta-goals generated during the projection process
must be planned for.

8. The Ekecutor: Using the Plan.
Before PANDORA executes any regular plan, all

currently active goals must have been planned for. If
there are none, PANDORA chooses the next plan on the
queue and executes it. The execution process involves
two alternative steps. If the next plan to be executed
has subplans, then these are installed in the queue, sub-
ject to the same projection process as plans in the origi-
nal planning phase. If not, the plan is carried out by
asserting its effects into data base.

One exception to this is made for meta-plans. Since
they are normally part of the act of planning and not just
acts to be planned, they must be executed immediately
(after simulation to detect conflicts). For example, the
meta-plan which installs the Put On Raincoat plan in

front of the PTrans in the rain example is run immedi-
ately.

9. More on the Goal Detector.
Goals may be detected in PANDORA during most

other processes. The ways that goals are detected may
be summarized as follows:

1. Most situations have goals attached to them which
PANDORA needs to plan for. In addition to our com-
mon morning goals, a good example of this is the set
of goals which arise whenever friends come to visit.

2. Preservation goals may be detected whenever any
statechange is asserted or projected into the data
base.

3. Most goal interactions (both positive and negative)
may be detected whenever any statechange is
asserted or projected into the data base which con-
tradicts a desired state from a goal or a precondi-
tion of a plan.

The current implementation of PANDORA concentrates
on detecting this third kind of goal, arising from goal
interactions.

10. References
Carbonell, J. 1978. Com..ter Models of Social cznd Politi-
cal Reasoning. Ph.D. Thesis, Yale University, New Haven,
Corm.

Cohen, P. and Perrault, R. 1979. Elements of a Plan-
Based Theory of Speech Acts. Cognitive Science, Vol. 3,
No. 3. 1979.

Deering. M., Faletti, J., and Wilensky, R. 1981. PEARL:
An Efficient Language for Artificial Intelligence Program-
ming. In the Proceedings of the Seventh International
Joint Conference on Artificial InteUigence, Vancouver,
British Columbia. August, 1981.

Deering, M., Faletti, J., and Wilensky, R. 1982. The
PEARL Users Manual. Berkeley Electronic Research
Laboratory Memorandum No. UCB/ERL/M82/19. March,
1982.

187

Fikes, R. and Nilsson. N.J. 1971. STRIPS: A new approach
to the application of theorem to proving problem solving.
ArtificiuZ Intelligence 2, 189-208.

Genesereth, M.R. 19’78. Automated Consultation for Com-
plex Computer Systems. Ph.D. thesis, Harvard Univer-
sity.

Hayes-Roth, B. and Hayes-Roth, R. 1979. Cogdive
Processes in Planning. RAND Report R-2366-ONR.

Newell, A. and Simon, H.A. 1972. Human Problem Solv-
ing. Englewood Cliffs, N.J.: Prentice Hall

Rieger, C. 19’75. The Commonsense Algorithm as a Basis
for Computer Models of Human Memory, Inference,
Belief, and Contextual Language Comprehension. In
‘i7beoretica.l Issues in Natural Language Processing, R.
Schank and B.L. Nash-Webber, (eds.), Cambridge, Mass.

Sacerdoti, E. 1977. A Structure for
Blsevier North-Holland, Amsterdam.

Plans and Behavior.

Schank, R.C. and Abelson, R.P 1977. Scripts, Plans,
Goals, and lhxierstanding. Lawrence Erlbaum Associ-
ates, Hillsdale, New Jersey.

Steflk, M.J. 1980. Planning and Meta-Planning -- MOLGEN:
Part 2. Stanford Heuristic Programming Project HPP-
80-13 (working paper), Computer Science Department,
Stanford University.

Sussman, G.J. 1975. A Computer Model of Skill Acqzbi-
tion. American Elsevier, New York.

Wilensky. R. 1981. Meta-planning: Representing and
using knowledge about planning in problem solving
and natural language understanding. Cognitive Sci-
ence, Vol. 5, No. 3. 1981.

Wilensky, R. 1982. Talking to UNIX in English: An Over-
view of a UC. In the Proceedings of the National Confer-
ence on AM’ficial Intelligence. Pittsburgh, PA. August,
1982.

188

