
Knowlcdgc Ileprcscntation Languages and Predicate Calculus:
I low to I-law Your Clrkc and Kat It Too

Charles Kich

‘I’hc hrtifici;d lntclligcrlcc I Amatory
RlilSS~ChUSCtlS luslitutc Of ‘I’cchnology

.\hstract

This paper attempts to rcsolvc some of the
controversy bcrwccn advocates of prcdicatc calcu1us
and users of other knowledge rcprcscntation
languages by demonstrating that it is possible to have
the key fcaturcs of both in a hybrid system. An
examp!c is given of a rcccntly implcmcntcd hybrid
system in which a spccia1i;lcd planning 1anguage CO-
exists with its translation into prcdicatc calculus. In
this rystcm. various kinds of reasoning rcquircd for a
program understanding task arc implcmcntcd at
cithcr the prcdicatc calculus level or the planning
laugungc lcvcl, dcpcnding on which is more natural.

Introduction

The ideas in this paper arise out of my cxpcricncc in the
Programmer’s Apprcnticc project [5.8] over the past scvcral years
dcvcloping a langungc for rcprcscnting knowlcdgc about programs and
programming. I’hcrcforc, 1 will begin by briefly recounting the history
of the knowlcdgc representation part of our project. Rcadcrs who have
worked cm otbcr projects to build intclligcnt knowlcdgc based systems
will undoubtedly find many aspects of our story quite familiar; this
leads mc to bclicvc that the novel step WC have rcccntly taken may be
widely applicable.

‘I‘hc story begins in 1975 when WC first pcrccivcd the need for a
rcprcscntation. diffcrcnt from the literal text of a program, which
dcscribcd the logical structure of a program at various lcvcls of
abstraction. l‘hc application system WC wcrc designing (the
Programmer’s Apprcnticc) would L~SC this representation in various
ways to analyze, synthcsizc, modify, verify and explain programs.
Having no prcconccivcd rommitmcnt to a particular formalism, we
looked to our own intuitions and informal notations on blackboards
and scratch pads for an appropriate framework. What we came up with
was a language of boxes and arrows. with boxes inside of boxes and
scvcral difficrcnt kinds of boxes and arrows. The details of this language
don’t matter hcrc (it is described in detail clscwhcrc [6,7]) - what is
important is that its structure originated in our intuitions about what we
wcrc rcprcscnting and the reasoning WC intcndcd to perform.

This report describes rcscarch done at the Artificial Intelligence
Laboratory of the h4assacbusctts lnstitutc of ‘I‘cchnology. Support for
the laboratory’s artificial intclligcncc rcscarch has been pro\ idcd in part
by the Advanced Research Projects r\gcncy of the Dcpartmcnt of
Dcfcnsc under Office of Naval Rcscarch contract NOOOI+SO.C-0505,
and in part by National Science Foundation grants klCS-7912179 and
hKS-8117633.

The language. which WC called plarl diagram. was then
implcmcntcd in a straightforward way and used for various kinds of
reasoning tasks over the next four or five years. For example,
Shrobc [9.10] wrote a module which verified the consistency of plan
diagrams; Waters [11,12] wrote a module which recognized the
occurrcncc of certain common patterns in plan diagrams. During this
period, we took a fairly ad hoc’ approach to the semantics of our
knowlcdgc rcprcscntation. This is not to say that WC didn’t know what
plan diagrams meant. but just that ultimately the meaning of the
rcprcscntntion was implicit in the proccdurcs WC were writing to
manipulate it (some have called this an “operational” semantics).

In 1979, bcforc embarking on a major cxtcnsion and re-
imp1cmcntation of parts of the Programmer’s Apprcnticc, 1 undertook
to dcfinc a formal semantics for plan diagrams. ‘I’hc approach I chose
for this task was to translate plan diagrams into another language which
already had a well-dcfincd formal scmnntics. namely a version Of
prcdicatc calculus. ‘I’hc major hcncfit I cxpcctcd to gain from this effort

was to clarify some grcy arcas in the meaning of plan diagrams. AS a
corollary, I also expcctcd to USC the formal semantics as a kind of
specification against which our manipulations of plan diagrams could
bc validated.’ 1 did not howcvcr cxpcct the prcdicatc caiculu~ to show
up in any direct way in the system implcmcntation. It turns out that 1
was wrong! The predicate calculus formalization was direcfly usable as
rllc basis for a practical itupleuwnlatiorr in which predicate calculus and
plan diagratm co-exist

Plan 1Xagrams

In order to apprcciatc how this state of affairs came about, WC now
need to dcscribc plan diagrams in more detail. Figure 1 shows the
rcprcscntation in the language of p.lan diagrams of how to implement a
push operation on a stack implcmcntcd as an array with an index
pointing to the top clcmcnt.

1. Please note that I do not intend any negative connotation in the use
of the term “ad hoc” here, but just the dictionary definition:
“conccrncd with a particular end or purpose.”

2. Though this is not the major point of this paper, I claim that this
sort of translation into predicate calculus is almost always worth
attempting. Morcovcr. many other people have made this
observation [2.13]. so it should no longer be controversial.

193

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

This sort of diagram is called an owr/~~. An overlay is made up of
two plans (one on the right side and one on the left side) and a set of
corrcspondcnccs (hooked lines) between them. Each plan is a
hierarchical structure with named, typed parts, called roles. (There are
also construitm bctwccn the roles of a plan, but since thcsc are already
written in a logical language, their translation to predicate calculus is
not part of what is interesting here.)

In the overlay of Figure 1, the plan on the right side rcprcsents the
operation type Push, whose roles arc its inputs, named Old (of type
stack) and Input (any type). and its output, named New (of type stack).
The plan on the left side of the oicrlay, called Hump-and-update,
dcscribcs the pattern of operations and data structures which
implements Push. This plan has four top-level roles: I3ump (operation
type Addl); Update (operation type Arraystorc); and Old and New
(composite data type Indexed-array). Each of thcsc roles has sub-roles
by virtue of being composite types: the sub-roles of Bump and Update
arc the input and output roles of the corresponding operation types; the
sub-roles of Old and New arc named ISasc (type array) and Index (type
integer). Arrows in plan diagrams, such as bctwccn the Output of the
Bump of Bump-and-update and the Input of the Update, indicate the
flow of data.

Finally, the hooked corrcspondcnce lines in an overlay indicate
how to map between the implcmcntation description on the left and the
more abstract description on the right. For cxamplc. the hooked line
bctwccn the Input of the Update of Bump-and-update and the !nput of
Push indicates that the clcmcnt stored in the array in the
implcmcntation view corresponds to the object which is pushed onto
the stack in the more abstract view.

Gcncrally speaking. translating from plan diagrams to predicate
calculus amounts to translating from a richly structured language, i.e.
one with many different primitive constructs and methods of
combining them, to a much simpler language: the version of predicate

FIGURE 1.

r -- ------_-
1

old:indexed-array i

bump:
add1

input:any

update:
arraystore

new: indexed-array I
.- ----- -1

calcul~rs I USC provides functions and relations as primitive notions, with
boolean conncctivcs. quantification and equality as combining
methods. Thus one cffcct of the translation process is to make explicit
certain semantic commonalitics bctwccn different plan diagram
constructs. For cxamplc, both overlay names and role names become
function symbols in the predicate calculus: both data flow arrows and
overlay corrcspondcnccs become logical cqualitics. The surprising
result (though in retrospect it seems obvious) is that these semantic
commonalitics can also be exploited for an elegant implcmcntati&.

A I lyhrid hplcnmtation

The implcmcntation that cnsucd is a hybrid system in which the
predicate calculus translation of a plan diagram co-exists with an
explicit rcprcscntation of its box and arrow structure. Furthermore,
both lcvcls of language arc used for the various kinds of reasoning that
need to take place for the application domain. For example, the
following is part of the prcdicatc calculus translation of the left side of
Figure 1 (plans become prcdicatcs on a domain of n-tuplcs).3

bump-and-update(a) *
[output(bump(a)) = index(update(a))
A index(old(cu)) = input(bump(a))
A base(old(tr)) = old(update(a))
A indcx(new(tr)) = output(bump(a))
A base(new(n))=output(update(a))]

‘l’his formula is stored and manipulated in a prcdicatc calculus

utility pitck;lgc 141 which provides certain simple forms of reasoning.
‘1’11~ basic idcn of the hybrid implementation is to USC the fiicilitics of
the prcdicatc calculus packilgc for those types of reasoning which, after
the translation, arc easily cxprcssiblc in the language of predicate
calculus.

For example, one kind of rcnsoning that the Programmer’s
Apprcnticc needs to do is to propngntc preconditions and
postconditions (part of the constraints of operation types) along data
flow arrows to XC if they arc consistent. Given thilt the inputs and
outputs of operations bccomc function terms like output(bump(a))

above, and given that data flow arrows become cqualitics bctwccn such
tcrrns. this kind of propagation is implcmcntcd by substitution of
equals in the predicate calculus. For example. if the postcondition of
Add1 is as shown below,

add1 (a) 3 [output(a) = input(a) + 1]

then one can conclude by this reasoning that the Index of the New
indcxcd-array is one more than the lndcx of the Old indexed-array.
Furthcrmorc, the prcdicatc calculus rcdsoning utility package which we
USC performs deductions based on substitution of equals very
cfficicntly. (It also performs these deductions incrcmcntally with
retraction, which allows us to easily cxplorc the cffccts of adding and
removing data flow arrows.)

3. This presentation supprcsccs details of the formalization having to
dl, with mutable data strucrurcs. See !6.7] for a more complete
treatment.

BUMP-AND-UPDATE PUSH

BIJNP-AND-UPDATE-AS-PUSH

194

Another attractive feature of performing some deductions in the
predicate calculus translation is that diffcrcnt plan diagram constructs
which arc translated into similar predicate calculus forms can share the
implcmcntation of some of the reasoning that is rcquircd with them.
For cxamplc, as mentioned earlier, both data flow arrows and overlay
corrcspondcnccs bccomc cqualitics. ‘I’hc following is part of the
prcdicatc calculus translation of the overlay in Figure 1 (overlays
bccomc fimctions from n-tuplcs to n-tuplcs).

p = bump-and-update-as-push(a) *
[old(P) = indexed-array-as-stack(old(cr))
A input(@) = input(update(n))
A new@) = indexed-array-as-stack(new(ar))]

Given this foimali;ration. substitution of cqunls also scrvcs to map
information bctwecn corresponding plans in an overlay. For example,
anything that is asscrtcd to bc true of the Input of the Update of a
13ump-and-updntc plan automatically bccomcs true of the Input of the
corresponding Push. and vice versa.

WC have also implcmcntcd a gcncral mechanism in the predicate
calculus utility package which makes deductions based on the domain
and range of functions. Given that both roles and overlays bccomc
functions, this single mechanism takes CarC of both enforcing type
restrictions on the roles of a plan and asserting the appropriate abstract
plan type corresponding to an implcmcntation plan in an overlay. For
cxamplc, asserting that the bump function has domain bump-and-
update and range add1 causes the following deduction to occur.

bump-and-update(a) =+ addl(bump(a))

Similarly, asserting that the bump-and-update-as-push fimction has
domain bump-and-update and range push causes the following
deduction to occur by the same mechanism.

bump-and-update(a) * push(bump-and-update-as-push(a))

Other kinds of reasoning used in the Programmer’s Apprcnticc are
flor easy to express as direct manipulations on prcdicatc calculus
fonnulac. l’hcrcforc we explicitly store the original plan diagram as
extra-logical annotation of the prcdl-, ‘We calculus translation. For
cxamplc, as far as the predicate calculus reasoning mechanisms are
concerned, both bump and bump-and-update-as-push arc just function
symbols. However some reasoning proccdurcs need 10 treat thcsc two
symbols very diffcrcntly because one names a role and the other an
overlay. ‘The bcsr way to think of these proccdurcs is as operating on
plan diagrams.

For cxamplc. a powerful method of program analysis used by the
Programmer’s Apprcntlcc is analysis by inspection. The key step in
analysis by inspection is to recognize familiar patterns in a program.
This recognition is achieved in the I’rogrammcr’s Apprentice by
translating a program into a plan diagram and then trying to match it
against a library of standard plan diagrams. ‘I’his matching
algorithm [l] is most naturally written in the langungc of plan diagrams,
not in terms of the predicate calculus formulae directly.” What I mean

4. Note howcvcr, that once a match has been found, it is rccordcd in
the the predicate calculus utility package as an assertion of the plan type
prcdicatc. Thus from point of view of the predicate calculus utility
package, the marching algorithm is a dcril cd implication.

hcrc by “natural” is: first. I doubt whcthcr one could c\cr discover the
right matching algorithm by thinking in ccrms of the prcdicatc calculus
formulae: and second. although it is thcorctically possible to implement
a plan diagram marching algorithm c~pcrating directly on the prcdicatc
calculus fOrmulac, this approach does not lead to a convcnicnt or an
cflicicnt implementation.

Similarly, an important part of program synrhcsis reasoning in the
Programmer’s Apprcnticc rcquircs breadth-first traversal of a program’s
plan diagram (c.g. the tree shown in Figure 2). looking for the next
implclnc~lti~tioll decision to make. This proccdurc is also most naturally
written in the language of plan diagrams.

Discussion

Ijcforc going any further it is crucial to undcrstnnd that this paper is
about pragmatic rather than philosophical issues in knowledge
rcprcscntation. What WC have dcvclopcd via our cxpcricncc with plan
diagrams and predicatr calculus is a ncvl methodology for
implcmcnting intclligcnt knowlcdgc based systems. ‘I’his methodology
has significant bearing on how to structure the ncccssary reasoning
proccsscs in such systems; 5 it dots not however have anything to say
about the important questions of the meaning and cxprcssivc pdwer of
knowlcdgc rcprcscntntions (since WC arc only talking about knowledge
rcprcscntations which can bc Iranslated into prcdicntc calculus).

We can summar& the methodology as follows: Use a hybrid
system in which an ad hoc knowlcdgc representation language co-exists
with a prcdicatc calculus translation. At the predicate calculus level,
provide as much reasoning power as can bc naturally cxprcsscd and
cfticiently implcmcntcd in the language of predicate calculus. At the
higher 1~~1. implement those reasoning proccdurcs which naturally
exploit t.hc structure of the ad hoc knowlcdgc rcprescntation language.
i-?nally. provide explicit connections bctwccn the two lc\cls so that
C~CII~~CS at OIV.Z ICVC~ can bc incrementally transliltcd to the other.

5. It would bc nice if MC had prccisc ways of talking about the
structure of reasoning procccscs (and hopefully M’C c\,cntunlly will). For
the mcantimc. how~vcr. the rcadcr will have 10 be satisfied by examples
and weak arguments about “naturalness.”

195

This hybrid approach rcsolvcs some of the controversy [3] bctwccn
advocates of prcdicatc calculus and the users of other knowledge
rcprcscntation languages by demonstrating that you can have the key
fcaturcs of both. A typical argument made by advocates of predicate
calculus is that a given knowlcdgc rcprcscntntion language is not
intcrcsting bccausc it can bc translated into (“is a notational variant of’)
prcdicntc calculus. ‘l-his argument misses the important practical issue,
nnmcly what happens if you actually try to USC the predicate calculus
translation to implcmcnt the task for which the origin,11 knowledge
rcprcscntation 1mg~1qy was dcsigncd. What lqy-ms is that, in order
to write cffcctivc rcasonino b proccdurcs. you end up reinventing
csrcntinlly the same knowlcdgc rcprcscntation language as an ad hoc set
of conventions and annolations on top of the prcdicatc calculus.

On the other hand, ad hoc knowlcd_rc rcprcscntation languages by
thcmsclvcs typically arc not dcsigncd to facilitate the small, simple
deductions. such as implications and substitutions. which arc often
nccdcd to mcuiate bctwcen their associated special purpose reasoning
procedures. ‘l’hcsc small. simp!c deductions arc just the kind of
deductions for which existing predicate calculus machinery is very
cffcctive.

Finally, it is interesting to note that one can arrive at this
methodology from cithcr of two directions. In our cxpcricncc, we
started with an ad hoc language and reasoning proccdurcs and then
added the prcdicatc calculus lcvcl for semantic clarity, I could also
imagine starting with predicate calculus as the language of expression
and then dcbcloping a higher level language as the set of conventions
and annotations required to write effective reasoning procedures. In
either case, the important conclusion is that both lcvcls of language are
useful for building prhctical systems.

Acknowlcdgcments

Many of the ideas in this paper were devclopcd in collaboration with
Dan Brotsky. Also, WC would probably never have tried to do things

Rcfcrcnccs

111

PI

[31

I-11

[51

07

171

PI

[91

[lOI

D11

WI

1131

D. Isrotsky, “Program Understanding Through Cliche
Recognition”, (M.S. Proposal), Ml’l’/Al/WP-224, Dcccmbcr,
1981.
R. Fikcs and G. llcndrix. “A Network-Ihscd Knowledge
Rcprcscntation and its Natural Deduction System”, Proc. of
5th lrlt. Joinl C’or$ 011 Artjficial l~lrclligcncc, Cambridge,
Massachusetts. August 1977. pp. 235-246.
t-‘. 1 In! cs, “Iii ikf’cncc of 1 .ogic”. hoc. c?f’Slh 1~1. Joirr/ col$

OII Ar~ificid Iutdligcm-e. Cambridge, hlassachusctts, August
1977, pp. 559-565.
1)./I. hlcAllcstcr. “Reasoning Utility Package User’s Manual”,
M I.I’/,I I hi-667. April, 1982.
C. Rich, I I.E. Shrobc. and R.C. Waters, “An Ovcrvicw of the
Pro_crainnicr’s Apprcnticc”. Pm-. of 6/h Int. Jvilll Couf: on
Ar/$ciul Iurt~lligcnre, ‘I’okyo. Japan. August, 1979.
C. Rich, “lnspcction Methods in Programming”,
R/l I’l‘/h l/‘i’R-003, (Ph.D. thesis), Ikcmbcr, 1980.
C. Kick. “A Formal Rcprcscntation for Plans in the
Progr,ltnmcr’s Apprcnticc”, I’roc. of 7111 IHI. Joirlr Corf. on
Arrifirial Ir~rclligcrm. Vmcouvcr, Canada, August, 1981.
C. Rich and R.C. Waters. “Abstraction. Inspection and
Debugging in Programming”, MI’l’/AtM-634, June, 1981.
H.1’. Shrohc, “l’xplicit Control of Rcnsoning in the
Programmer’s Apprentice”, I’ruc. of 4111 lru. C’onf: on
Aulorlialccl Llcrhltcriot~, February, 1979.
H.E. Shrobc. “Dcpcndcncy Dircctcd Reasoning for Complex
Program Understanding”, (Ph.D. Thesis), Ml?‘/AI/‘I’R-503,
April, 1979.
R.C. Waters, “Automatic Analysis of the Logical Structure of
Programs”, Ml?‘/Al/‘l’R-492, (Ph.D. Thesis), December,
1978.
R.C. Waters, “A Method for Analyzing Loop Programs”,
IL’L’L Tram. on So$ware I:ilg., Vol. SE-5, No. 3. May 1979,
pp. 237-247.
W. Woods. “What’s in a l-ink”, Representafion and
Udcrs~anding, Academic Press, 1975. this way if not for David McAlIestcr’s Reasoning Utility Package.

196

