From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

At
!
Muassachusetts
Abstract

This paper attempts to resolve some of the
controversy between advocates of predicate caleulus

and uscrs of other knowiedge representation
languages by demonstrating that it is possible to have

the key features of both in a hybrid system. An
example is given of a recently implemented hybrid
systemn in which a specialized planning language co-

on into predica

exists with its translati
this system, various kKinds of reasoning required for a
program undcrs[anding task are implemented at

cither the prcd

ate calculus, In

calculus level or the planning

The ideas in this paper arisc out of my cxperience in the

Programmer’s Apprentice project [5.8] over the past several ycars
developing a language for representing knowledge about programs and

programming. Therefore, I will begin by briefly recounting the history
of the knowledge representation part of our project. Readers who have
worked on other projects to build intelligent knowledge bascd systems
will undoubtediy find many aspects of our story quite famiiiar; this

<o oy holi [N -
ICaas mce o oGicve tiat nc

‘The story begins in 1975 when we first perecived the need for a
representation, different from the literal text of a program, which
described the logical structure of a program at various levels of
abstraction.

The appllcauon svstcm we were designing (the

ation in various

r s T)grams,
Having no prcconccwcd commitment to a pal ticular fonnallsm we
Jooked to our own intuitions and informal notations on blackboards
and scratch pads for an appropriate framework. What we came up with
was a language of boxes and arrows, with boxes inside of boxes and

several different kinds o ITOWS detai this langi
o

The details of this mugu‘dge

important is Lhat its structurc orig matcd in our intuitions about what we
were representing and the reasoning we intended to perform.

This report describes rescarch donce at the Artificial Intclligence
Laboratory of the Massachusetts Institute of Technology. Support for
the laboratory’s artificial intelligence rescarch has been provided in part

PR SRPRETE § Y, Ty | 2 IO SON PP, lon TN imn e ik

by the Advanced Rescarch Projects Agency of the Department of
Defense under Office of Naval Rescarch contract N0OO014-80-C-05085,
and in part by National Science Foundation grants MCS-7912179 and
MCS-8117633.

193

nstitute o

The language, which we called plan diagrams, was then
implemented in a straightforward way and used for various kinds of
reasoning tasks over the next four or five years. For example,
Shrobe [9.10] wrote a module which verificd the consistency of plan

diagrams; Waters {11,12] wrote a moduie which recognized the
occurrence of certain common patterns in plan diagrams. During this

period, we took a fairly ad hoc” approach to the semantics of our
knowledge representation. This is not to say that we didn't know what
plan diagrams mecant, but just that ultimately the meaning of the
representation was implicit in the proccdurcs we were writing to

manipulate it (some have calied this an "operational scmantics).
In 1979, before embarking on a major cxtcnsion and re-

implementation of parts of the Programmer’s Apprentice, 1 undertook
to define a formal semantics for plan diagrams. The approach I chose
for this task was to lmnqlutc plnn diagmms inLo another languagc which

predicaic ca
Ia

I T,

arcas in the meaning of plan diagrams. As a

let
was to clarify some grey
corollary, 1 also expected to use the formal scmantics as a kind of
specification against which our manipulations of plan diagrams could
be validated.? 1 did not however cxpect the predicate calculus to show

up in any direct way in the system lmplcmcnlauon It turns out that 1

was wrong' The pre dicaie calculiis jwmu

hasis for a prac ~tical mmlpnmmalmn in which pr(‘d[(‘ﬂfe calculus and

Jor a practicdl

grams co-exist.

the t
he

1

plan diag
Plan Diagrams

tate of affairs came about, we now
need to describe plan dlagrums in more detail. Figure 1 shows the
representation in the language of plan diagrams of how to implement a
push operation on a stack implemented as an array with an index

pointing to the top clement.

1. Please note that I do not intend any negative connotation in the use
of the term "ad hoc” here. but just the dictionary definition:

" els ioilae A d ae sy "

concerned with a particular end or pu

naon
posc.

2. Though this is not the major point of this paper, I claim that this
sort of translation into predicate caiculus is aimost always worth

made thig

neonle have
people have

other

oner

attomnting Moreover, many
atiempung. NMOTCeVer, many

observation [2.,13]. so it should no longer be controversial.

This sort of diagram is called an overlay. An overlay is made up of
two plans (one on the right side and one on the left side) and a set of
correspondences (hooked lines) between them. Each plan is a
hicrarchical structure with named, typed parts, called roles. (There are
also constraints between the roles of a plan, but since these are already
written in a logical language, their translation to predicate calculus is
not part of what is interesting here.)

In the overlay of Figure 1, the plan on the right side represents the
operation type Push, whose roles are its inputs, named Old (of type
stack) and Input (any type). and its output, named New (of type stack).
The plan on the left side of the overlay, called Bump-and-update,
describes the pattern of opcrations and data structures which
implements Push. This plan has four top-level roles: Bump (operation
type Addl); Update (operation type Arraystore); and Old and New
(composite data type Indexed-array). Each of these roles has sub-roles
by virtuc of being composite types: the sub-roles of Bump and Update
are the input and output roles of the corresponding operation types; the
sub-roles of Old and New are named Base (type array) and Index (type
integer). Arrows in plan diagrams, such as between the Output of the
Bump of Bump-and-updatc and the Input of the Update, indicate the
flow of data.

Finally, the hooked correspondence lines in an overlay indicate
how to map between the implementation description on the left and the
more abstract description on the right. For example, the hooked line
between the Input of the Update of Bump-and-update and the Input of
Push indicates that the clement stored in the array in the
implementation vicw corresponds to the object which is pushed onto
the stack in the more abstract view.

Generally speaking, translating from plan diagrams to predicate
calculus amounts to translating from a richly structured language, i.e.
onc with many different primitive constructs and methods of
combining them, to a much simpler language: the version of predicate

FIGURE 1.

| old:indexed-array

|
| (base:array)

indexed-array-as-stack
input:int

input:any

old:stack

output:int

—
input:
T —_//

index:
int
old:array

new:stack

update:
arraystore

indexed-array-as-stack

|
| (base:array’(index:int)
|

new:indexed-array |
—

BUMP-AND-UPDATE PUSH

BUMP-AND-UPDATE-AS-PUSH

194

calculus I use provides functions and relations as primitive notions, with
boolcan conncctives, quantification and cquality as combining
methods. Thus one effect of the translation process is to make explicit
certain semantic commonalities between different plan diagram
constructs. For cxample, both overlay names and role names become
function symbols in the predicate calculus; both data flow arrows and
overlay correspondences become logical cqualitics. The surprising
result (though in retrospect it scems obvious) is that these semantic
commonalitics can also be exploited for an clegant implcmcnlatién.

A Hybrid Implementation

The implementation that ensued is a hybrid system in which the
predicate calculus translation of a plan diagram co-cxists with an
explicit representation of its box and arrow structure. Furthermore,
both levels of language arc used for the various kinds of rcasoning that
nced to take place for the application domain. For example, the
following is part of the predicate calculus translation of the left side of
Figure 1 (plans become predicates on a domain of n-tuples).

bumn-and.

[output(bump(a)) = index(update{ay))
A index(old(a)) =input(bump(a))

A base(old(«a)) = old{update(a))

A index{new{a)) = output(bump(a}))
A base(new(a)) = output{update(a))]

undatol o) =>
upcateia;

This formula is stored and manipulated in a predicate calculus
utility package [4] which provides certain simple forms of reasoning.
The basic idea of the hybrid implementation is to use the facilitics of
the predicate calculus package for those types of reasoning which, after
the translation, are casily expressible in the language of predicate
calculus.

For cxample, one kind of rcasoning that the Programmer's
Apprentice needs to do to propagatc preconditions and
postconditions (part of the constraints of operation types) along data
flow arrows to scc if they arc consistent. Given that the inputs and
outputs of opcrations become function terms like output{bump(a))
above, and given that data flow arrows become cqualitics between such
terms. this kind of propagation is implemented by substitution of
cquals in the predicate calculus. For example, if the postcondition of
Addl is as shown below,

is

add1(a) = [output{a)=input(a) + 1]

then one can conclude by this reasoning that the Index of the New
indexed-array is one more than the Index of the Old indexed-array.
Furthermore, the predicate calculus reasoning utility package which we
usc performs deductions based on substitution of cquals very
cfficiently. (It also performs these deductions incrementally with
retraction, which allows us to casily explore the cffects of adding and
removing data flow arrows.)

3. This presentation suppresses details of the formalization having to
do with mutable data structures. Sce [6.7] for a more complete
treatment.

Another attractive feature of performing some deductions in the
predicate calcuius transiation is that different pian diagram construcis
which are translated into similar predicate calculus forms can share the
implementation of some of the reasoning that is required with them.

For example, as mentioned carlier, both data flow arrows and overlay
correspondences become cqualities. The following is part of the
predicate calculus translation of the overlay in Figure 1 (overlays

| T £t
peCcume ruict

ions from n-tupic wip
B =bump-and-update-as-push{a) =>

{ 0ld(B) =indexed-array-as-stack(old(a))

A input(8) =input({update(a))

A new(B) = indexed-array-as-stack({new(ay))]

Given this formaiization, substitution of equais aiso serves to map
information between corresponding plans in an overlay. For example,
anything that is asserted to be truc of the Input of the Update of a
Bump-and-updatc plan automatically becomes true of the Input of the
corresponding Push, and vice versa.

We have also implemented a general mechanism in the predicate
calculus utility package which makes deductions based on the domain
and range of functions. Given that both roles and overlays become
functions, this single mechanism takes care of both cnforcing type
restrictions on the roles of a plan and asserting the appropriate abstract
plan type corresponding to an implementation plan in an overlay. For
example, asserting that the bump function has domain bump-and-
update and range add1 causcs the following deduction to occur.

bump-and-update(a) = add1(bump(a))

Similarly, asserting that thc bump-and-update-as-push function has
domain bump-and-update and range push causes the following
deduction to occur by the same mechanism.

bump-and-update(a) => push{bump-and-update-as-push(a))

Other kinds of reasoning used in the Programmer's Apprentice are
not easy to cxpress as direct manipulations on predicate calculus
formulae. Thercfore we explicitly store the original plan diagram as
extra-logical annotation of the predicate calculus translation. For
cxample, as far as the predicate calculus reasoning mechanisms are
concerned, both bump and bump-and-update-as-push arc just function
symbols. However some reasoning procedures need to treat these two
symbols very differently because one names a role and the other an
overlay. The best way to think of these procedures is as operating on
plan diagrams.

For example. a powerful method of program analysis used by the
Programmer’s Apprentice is analysis by inspection. The key step in
analysis by inspection is to recognize familiar patterns in a program.
This rccognition is achicved in the Programmer’s Apprentice by
translating a program into a plan diagram and then trying to match it
against a library of standard plan diagrams. ‘This matching
algorithm [1] is most naturally written in the language of plan diagrams,
not in terms of the predicate calculus formulac directly.! What I mean

4. Note however, that once a match has been found, it is recorded in
the the predicate calculus utility package as an assertion of the plan type
predicate. Thus from point of view of the predicate calculus utility
package, the matching algorithm is a derived implication,

195

here by "natural” is: first, I doubt whether one could cver discover the
right matching aigorithm by thinking in terms of the predicate calcuius
formulac; and sccond, although it is theoretically possible to implement
a plan diagram matching algorithm operating dircctly on the predicate
calculus formulac, this approach does not lead to a convenient or an
cfficient implementation.

Similarly, an important part of program synthesis reasoning in the
Programmer’s Apprentice requires breadth-first traversai of a program’s
plan diagram (e.g. the tree shown in Figure 2). looking for the next
implementation decision to make. This procedure is also most naturally
written in the language of plan diagrams.

Discussion

Before going any further it is crucial to understand that this paper is
about pragmatic rather than philosophical issues in knowledge
representation. What we have developed via our experience with plan
diagrams and predicate calculus is a new methodology for
implementing intelligent knowledge based systems. ‘This methodology
has significant bearing on how to structure the necessary reasoning
processes in such systcms;5 it does not however have anything to say
about the important questions of the meaning and expressive power of
knowledge representations (since we are only talking about knowledge
representations which can be translated into predicate calculus).

We can summarize the mecthodology as follows: Use a hybrid
systemn in which an ad hoc knowledge representation language co-cxists
with a predicate calculus translation. At the predicate calculus level,
provide as much reasoning power as can be naturally expressed and
cfticiently implemented in the language of predicate calculus. At the
higher level. implement thosc reasoning procedures which naturally
exploit the structure of the ad hoc knowledge representation language.
Finally, provide explicit connections between the two levels so that
changes at one level can be incrementally translated to the other.

5. It would be nice if we had precise ways of talking about the
structure of rcasoning processes (and hopefully we eventually will). For
the meantime, however. the rcader will have 10 be satisfied by examples
and weak arguments about "naturalness.”

FIGURE 2
push

TN

old input new

indexed-array- bump-and-update indexed-array-

as-stack as-stack
old D update new
base index input output old index i:hw bas[index

‘This hybrid approach resolves some of the controversy [3] between
advocates of predicate calculus and the users of other knowledge
representation languages by demonstrating that you can have the key
features of both. A typical argument made by advocates of predicate
calculus is that a given knowledge representation language is not
interesting because it can be translated into (s a notational variant of™")
predicate calculus. This argument misses the important practical issue,
namely what happcens if you actually try to usc the predicate calculus
translation to implement the task for which the original knowledge
representation language was designed. What happens is that, in order
to writc effective rcasoning procedures, you end up reinventing
essentially the same knowledge representation language as an ad hoc set
of conventions and annotations on top of the predicate calculus.

On the other hand, ad hoc knowledge representation languages by
themselves typically are not designed to facilitate the small, simple
deductions, such as implications and substitutions. which are often
nceded to mediate between their associated special purpose reasoning
procedures. These small, simple deductions are just the kind of
deductions for which cxisting predicate calculus machinery is very
effective.

Finally, it is intercsting to note that one can arrive at this
methodology from cither of two directions. In our experience, we
startcd with an ad hoc language and reasoning procedurcs and then
added the predicate calculus level for semantic clarity, I could also
imagine starting with predicate calculus as the language of expression
and then developing a higher level language as the sct of conventions
and annotations required to write effective reasoning procedures. In
cither case, the important conclusion is that both levels of language are
useful for building practical systems.

Acknowledgements
Many of the ideas in this paper were developed in collaboration with

Dan Brotsky. Also, we would probably never have tricd to do things
this way if not for David McAllester's Reasoning Ultility Package.

196

References

[1] D. Brotsky, "Program Understanding Through Cliche
Recognition”, (M.S. Praposal), MIT/A1/WP-224, December,
1981.

[2] R. Fikes and G. Hendrix, "A Network-Based Knowledge
Representation and its Natural Deduction System™, Proc. of
Sth I, Joint Conf. on Artificial Intelligence, Cambridge,
Massachusctts, August 1977, pp. 235-246.

[3] P. Hayes, "In Defence of Logic”, Proc. of Sth Int. Joint Conf:
on Ariificial Intelligence. Cambridge, Massachusetts, August
1977, pp. 559-565.

[4] D.A. McAllester, "Reasoning Utility Package User's Manual”,
MIT/AIM-667, April, 1982,

[5} C. Rich, H.E. Shrobe, and R.C. Waters, "An Overvicew of the
Programnmer’s Apprentice”, Proc. of 6th Int. Joint Conf. on
Artificial Intelligence, Tokyo, Japan, August, 1979,

[6] C. Rich, "Inspection Mcthods in Programming™,
MIT/AL/TR-604, (Ph.D, thesis), December, 1980.

[7] C. Rich, "A Formal Representation for Plans in the
Programmer’s Apprentice”, Proc. of 7th Int. Joint Conf, on
Artificial Intelligence, Vancouver, Canada, August, 1981,

[8] C. Rich and R.C. Waters, "Abstraction, Inspection and
Debugging in Programming”, MIT/AIM-634, June, 1981,

[9] H.E. Shrobe, "Explicit Control of Reasoning in the
Programmer’'s Apprentice”, Proc. of 4th Int. Conf. on
Automated Deduction, February, 1979.

[10] H.E. Shrobe, "Dependency Directed Reasoning for Complex
Program Understanding”, (Ph.D. Thesis), MIT/A1/TR-503,
April, 1979.

[11] R.C. Waters, "Automatic Analysis of the Logical Structure of
Programs™, MIT/A1/TR-492, (Ph.D). Thesis), December,
1978.

[12] R.C. Waters, "A Method for Analyzing Loop Programs”,
IELEE Trans. on Sofiware Eng., Vol. SE-5, No. 3, May 1979,
pp. 237-247. ’

[13] W. Woods, "What's in a Link", Representation and
Understanding, Acadenic Press, 1975.

