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.\hstract 

This paper attempts to rcsolvc some of the 
controversy bcrwccn advocates of prcdicatc calcu1us 
and users of other knowledge rcprcscntation 
languages by demonstrating that it is possible to have 
the key fcaturcs of both in a hybrid system. An 
examp!c is given of a rcccntly implcmcntcd hybrid 
system in which a spccia1i;lcd planning 1anguage CO- 
exists with its translation into prcdicatc calculus. In 
this rystcm. various kinds of reasoning rcquircd for a 
program understanding task arc implcmcntcd at 
cithcr the prcdicatc calculus level or the planning 
laugungc lcvcl, dcpcnding on which is more natural. 

Introduction 

The ideas in this paper arise out of my cxpcricncc in the 
Programmer’s Apprcnticc project [5.8] over the past scvcral years 
dcvcloping a langungc for rcprcscnting knowlcdgc about programs and 
programming. I’hcrcforc, 1 will begin by briefly recounting the history 
of the knowlcdgc representation part of our project. Rcadcrs who have 
worked cm otbcr projects to build intclligcnt knowlcdgc based systems 
will undoubtedly find many aspects of our story quite familiar; this 
leads mc to bclicvc that the novel step WC have rcccntly taken may be 
widely applicable. 

‘I‘hc story begins in 1975 when WC first pcrccivcd the need for a 
rcprcscntation. diffcrcnt from the literal text of a program, which 
dcscribcd the logical structure of a program at various lcvcls of 
abstraction. l‘hc application system WC wcrc designing (the 
Programmer’s Apprcnticc) would L~SC this representation in various 
ways to analyze, synthcsizc, modify, verify and explain programs. 
Having no prcconccivcd rommitmcnt to a particular formalism, we 
looked to our own intuitions and informal notations on blackboards 
and scratch pads for an appropriate framework. What we came up with 
was a language of boxes and arrows. with boxes inside of boxes and 
scvcral difficrcnt kinds of boxes and arrows. The details of this language 
don’t matter hcrc (it is described in detail clscwhcrc [6,7]) - what is 
important is that its structure originated in our intuitions about what we 
wcrc rcprcscnting and the reasoning WC intcndcd to perform. 

This report describes rcscarch done at the Artificial Intelligence 
Laboratory of the h4assacbusctts lnstitutc of ‘I‘cchnology. Support for 
the laboratory’s artificial intclligcncc rcscarch has been pro\ idcd in part 
by the Advanced Research Projects r\gcncy of the Dcpartmcnt of 
Dcfcnsc under Office of Naval Rcscarch contract NOOOI+SO.C-0505, 
and in part by National Science Foundation grants klCS-7912179 and 
hKS-8117633. 

The language. which WC called plarl diagram. was then 
implcmcntcd in a straightforward way and used for various kinds of 
reasoning tasks over the next four or five years. For example, 
Shrobc [9.10] wrote a module which verified the consistency of plan 
diagrams; Waters [11,12] wrote a module which recognized the 
occurrcncc of certain common patterns in plan diagrams. During this 
period, we took a fairly ad hoc’ approach to the semantics of our 
knowlcdgc rcprcscntation. This is not to say that WC didn’t know what 
plan diagrams meant. but just that ultimately the meaning of the 
rcprcscntntion was implicit in the proccdurcs WC were writing to 
manipulate it (some have called this an “operational” semantics). 

In 1979, bcforc embarking on a major cxtcnsion and re- 
imp1cmcntation of parts of the Programmer’s Apprcnticc, 1 undertook 
to dcfinc a formal semantics for plan diagrams. ‘I’hc approach I chose 
for this task was to translate plan diagrams into another language which 
already had a well-dcfincd formal scmnntics. namely a version Of 
prcdicatc calculus. ‘I’hc major hcncfit I cxpcctcd to gain from this effort 

was to clarify some grcy arcas in the meaning of plan diagrams. AS a 
corollary, I also expcctcd to USC the formal semantics as a kind of 
specification against which our manipulations of plan diagrams could 
bc validated.’ 1 did not howcvcr cxpcct the prcdicatc caiculu~ to show 
up in any direct way in the system implcmcntation. It turns out that 1 
was wrong! The predicate calculus formalization was direcfly usable as 
rllc basis for a practical itupleuwnlatiorr in which predicate calculus and 
plan diagratm co-exist 

Plan 1Xagrams 

In order to apprcciatc how this state of affairs came about, WC now 
need to dcscribc plan diagrams in more detail. Figure 1 shows the 
rcprcscntation in the language of p.lan diagrams of how to implement a 
push operation on a stack implcmcntcd as an array with an index 
pointing to the top clcmcnt. 

1. Please note that I do not intend any negative connotation in the use 
of the term “ad hoc” here, but just the dictionary definition: 
“conccrncd with a particular end or purpose.” 

2. Though this is not the major point of this paper, I claim that this 
sort of translation into predicate calculus is almost always worth 
attempting. Morcovcr. many other people have made this 
observation [2.13]. so it should no longer be controversial. 
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This sort of diagram is called an owr/~~. An overlay is made up of 
two plans (one on the right side and one on the left side) and a set of 
corrcspondcnccs (hooked lines) between them. Each plan is a 
hierarchical structure with named, typed parts, called roles. (There are 
also construitm bctwccn the roles of a plan, but since thcsc are already 
written in a logical language, their translation to predicate calculus is 
not part of what is interesting here.) 

In the overlay of Figure 1, the plan on the right side rcprcsents the 
operation type Push, whose roles arc its inputs, named Old (of type 
stack) and Input (any type). and its output, named New (of type stack). 
The plan on the left side of the oicrlay, called Hump-and-update, 
dcscribcs the pattern of operations and data structures which 
implements Push. This plan has four top-level roles: I3ump (operation 
type Addl); Update (operation type Arraystorc); and Old and New 
(composite data type Indexed-array). Each of thcsc roles has sub-roles 
by virtue of being composite types: the sub-roles of Bump and Update 
arc the input and output roles of the corresponding operation types; the 
sub-roles of Old and New arc named ISasc (type array) and Index (type 
integer). Arrows in plan diagrams, such as bctwccn the Output of the 
Bump of Bump-and-update and the Input of the Update, indicate the 
flow of data. 

Finally, the hooked corrcspondcnce lines in an overlay indicate 
how to map between the implcmcntation description on the left and the 
more abstract description on the right. For cxamplc. the hooked line 
bctwccn the Input of the Update of Bump-and-update and the !nput of 
Push indicates that the clcmcnt stored in the array in the 
implcmcntation view corresponds to the object which is pushed onto 
the stack in the more abstract view. 

Gcncrally speaking. translating from plan diagrams to predicate 
calculus amounts to translating from a richly structured language, i.e. 
one with many different primitive constructs and methods of 
combining them, to a much simpler language: the version of predicate 

FIGURE 1. 
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calcul~rs I USC provides functions and relations as primitive notions, with 
boolean conncctivcs. quantification and equality as combining 
methods. Thus one cffcct of the translation process is to make explicit 
certain semantic commonalitics bctwccn different plan diagram 
constructs. For cxamplc, both overlay names and role names become 
function symbols in the predicate calculus: both data flow arrows and 
overlay corrcspondcnccs become logical cqualitics. The surprising 
result (though in retrospect it seems obvious) is that these semantic 
commonalitics can also be exploited for an elegant implcmcntati&. 

A I lyhrid hplcnmtation 

The implcmcntation that cnsucd is a hybrid system in which the 
predicate calculus translation of a plan diagram co-exists with an 
explicit rcprcscntation of its box and arrow structure. Furthermore, 
both lcvcls of language arc used for the various kinds of reasoning that 
need to take place for the application domain. For example, the 
following is part of the prcdicatc calculus translation of the left side of 
Figure 1 (plans become prcdicatcs on a domain of n-tuplcs).3 

bump-and-update(a) * 
[ output(bump(a)) = index(update(a)) 
A index(old(cu)) = input(bump(a)) 
A base(old(tr)) = old(update(a)) 
A indcx(new(tr)) = output(bump(a)) 
A base(new(n))=output(update(a))] 

‘l’his formula is stored and manipulated in a prcdicatc calculus 

utility pitck;lgc 141 which provides certain simple forms of reasoning. 
‘1’11~ basic idcn of the hybrid implementation is to USC the fiicilitics of 
the prcdicatc calculus packilgc for those types of reasoning which, after 
the translation, arc easily cxprcssiblc in the language of predicate 
calculus. 

For example, one kind of rcnsoning that the Programmer’s 
Apprcnticc needs to do is to propngntc preconditions and 
postconditions (part of the constraints of operation types) along data 
flow arrows to XC if they arc consistent. Given thilt the inputs and 
outputs of operations bccomc function terms like output(bump(a)) 

above, and given that data flow arrows become cqualitics bctwccn such 
tcrrns. this kind of propagation is implcmcntcd by substitution of 
equals in the predicate calculus. For example. if the postcondition of 
Add1 is as shown below, 

add1 (a) 3 [ output(a) = input(a) + 1 ] 

then one can conclude by this reasoning that the Index of the New 
indcxcd-array is one more than the lndcx of the Old indexed-array. 
Furthcrmorc, the prcdicatc calculus rcdsoning utility package which we 
USC performs deductions based on substitution of equals very 
cfficicntly. (It also performs these deductions incrcmcntally with 
retraction, which allows us to easily cxplorc the cffccts of adding and 
removing data flow arrows.) 

3. This presentation supprcsccs details of the formalization having to 
dl, with mutable data strucrurcs. See !6.7] for a more complete 
treatment. 

BUMP-AND-UPDATE PUSH 

BIJNP-AND-UPDATE-AS-PUSH 
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Another attractive feature of performing some deductions in the 
predicate calculus translation is that diffcrcnt plan diagram constructs 
which arc translated into similar predicate calculus forms can share the 
implcmcntation of some of the reasoning that is rcquircd with them. 
For cxamplc, as mentioned earlier, both data flow arrows and overlay 
corrcspondcnccs bccomc cqualitics. ‘I’hc following is part of the 
prcdicatc calculus translation of the overlay in Figure 1 (overlays 
bccomc fimctions from n-tuplcs to n-tuplcs). 

p = bump-and-update-as-push(a) * 
[ old(P) = indexed-array-as-stack(old(cr)) 
A input(@) = input(update(n)) 
A new@) = indexed-array-as-stack(new(ar)) ] 

Given this foimali;ration. substitution of cqunls also scrvcs to map 
information bctwecn corresponding plans in an overlay. For example, 
anything that is asscrtcd to bc true of the Input of the Update of a 
13ump-and-updntc plan automatically bccomcs true of the Input of the 
corresponding Push. and vice versa. 

WC have also implcmcntcd a gcncral mechanism in the predicate 
calculus utility package which makes deductions based on the domain 
and range of functions. Given that both roles and overlays bccomc 
functions, this single mechanism takes CarC of both enforcing type 
restrictions on the roles of a plan and asserting the appropriate abstract 
plan type corresponding to an implcmcntation plan in an overlay. For 
cxamplc, asserting that the bump function has domain bump-and- 
update and range add1 causes the following deduction to occur. 

bump-and-update(a) =+ addl(bump(a)) 

Similarly, asserting that the bump-and-update-as-push fimction has 
domain bump-and-update and range push causes the following 
deduction to occur by the same mechanism. 

bump-and-update(a) * push(bump-and-update-as-push(a)) 

Other kinds of reasoning used in the Programmer’s Apprcnticc are 
flor easy to express as direct manipulations on prcdicatc calculus 
fonnulac. l’hcrcforc we explicitly store the original plan diagram as 
extra-logical annotation of the prcdl-, ‘We calculus translation. For 
cxamplc, as far as the predicate calculus reasoning mechanisms are 
concerned, both bump and bump-and-update-as-push arc just function 
symbols. However some reasoning proccdurcs need 10 treat thcsc two 
symbols very diffcrcntly because one names a role and the other an 
overlay. ‘The bcsr way to think of these proccdurcs is as operating on 
plan diagrams. 

For cxamplc. a powerful method of program analysis used by the 
Programmer’s Apprcntlcc is analysis by inspection. The key step in 
analysis by inspection is to recognize familiar patterns in a program. 
This recognition is achieved in the I’rogrammcr’s Apprentice by 
translating a program into a plan diagram and then trying to match it 
against a library of standard plan diagrams. ‘I’his matching 
algorithm [l] is most naturally written in the langungc of plan diagrams, 
not in terms of the predicate calculus formulae directly.” What I mean 

4. Note howcvcr, that once a match has been found, it is rccordcd in 
the the predicate calculus utility package as an assertion of the plan type 
prcdicatc. Thus from point of view of the predicate calculus utility 
package, the marching algorithm is a dcril cd implication. 

hcrc by “natural” is: first. I doubt whcthcr one could c\cr discover the 
right matching algorithm by thinking in ccrms of the prcdicatc calculus 
formulae: and second. although it is thcorctically possible to implement 
a plan diagram marching algorithm c~pcrating directly on the prcdicatc 
calculus fOrmulac, this approach does not lead to a convcnicnt or an 
cflicicnt implementation. 

Similarly, an important part of program synrhcsis reasoning in the 
Programmer’s Apprcnticc rcquircs breadth-first traversal of a program’s 
plan diagram (c.g. the tree shown in Figure 2). looking for the next 
implclnc~lti~tioll decision to make. This proccdurc is also most naturally 
written in the language of plan diagrams. 

Discussion 

Ijcforc going any further it is crucial to undcrstnnd that this paper is 
about pragmatic rather than philosophical issues in knowledge 
rcprcscntation. What WC have dcvclopcd via our cxpcricncc with plan 
diagrams and predicatr calculus is a ncvl methodology for 
implcmcnting intclligcnt knowlcdgc based systems. ‘I’his methodology 
has significant bearing on how to structure the ncccssary reasoning 
proccsscs in such systems; 5 it dots not however have anything to say 
about the important questions of the meaning and cxprcssivc pdwer of 
knowlcdgc rcprcscntntions (since WC arc only talking about knowledge 
rcprcscntations which can bc Iranslated into prcdicntc calculus). 

We can summar& the methodology as follows: Use a hybrid 
system in which an ad hoc knowlcdgc representation language co-exists 
with a prcdicatc calculus translation. At the predicate calculus level, 
provide as much reasoning power as can bc naturally cxprcsscd and 
cfticiently implcmcntcd in the language of predicate calculus. At the 
higher 1~~1. implement those reasoning proccdurcs which naturally 
exploit t.hc structure of the ad hoc knowlcdgc rcprescntation language. 
i-?nally. provide explicit connections bctwccn the two lc\cls so that 
C~CII~~CS at OIV.Z ICVC~ can bc incrementally transliltcd to the other. 

5. It would bc nice if MC had prccisc ways of talking about the 
structure of reasoning procccscs (and hopefully M’C c\,cntunlly will). For 
the mcantimc. how~vcr. the rcadcr will have 10 be satisfied by examples 
and weak arguments about “naturalness.” 
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This hybrid approach rcsolvcs some of the controversy [3] bctwccn 
advocates of prcdicatc calculus and the users of other knowledge 
rcprcscntation languages by demonstrating that you can have the key 
fcaturcs of both. A typical argument made by advocates of predicate 
calculus is that a given knowlcdgc rcprcscntntion language is not 
intcrcsting bccausc it can bc translated into (“is a notational variant of’) 
prcdicntc calculus. ‘l-his argument misses the important practical issue, 
nnmcly what happens if you actually try to USC the predicate calculus 
translation to implcmcnt the task for which the origin,11 knowledge 
rcprcscntation 1mg~1qy was dcsigncd. What lqy-ms is that, in order 
to write cffcctivc rcasonino b proccdurcs. you end up reinventing 
csrcntinlly the same knowlcdgc rcprcscntation language as an ad hoc set 
of conventions and annolations on top of the prcdicatc calculus. 

On the other hand, ad hoc knowlcd_rc rcprcscntation languages by 
thcmsclvcs typically arc not dcsigncd to facilitate the small, simple 
deductions. such as implications and substitutions. which arc often 
nccdcd to mcuiate bctwcen their associated special purpose reasoning 
procedures. ‘l’hcsc small. simp!c deductions arc just the kind of 
deductions for which existing predicate calculus machinery is very 
cffcctive. 

Finally, it is interesting to note that one can arrive at this 
methodology from cithcr of two directions. In our cxpcricncc, we 
started with an ad hoc language and reasoning proccdurcs and then 
added the prcdicatc calculus lcvcl for semantic clarity, I could also 
imagine starting with predicate calculus as the language of expression 
and then dcbcloping a higher level language as the set of conventions 
and annotations required to write effective reasoning procedures. In 
either case, the important conclusion is that both lcvcls of language are 
useful for building prhctical systems. 
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