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ABSTRACT 

The central component of commonsense reasoning about 
causdity is the envisionment: a description of the behavior of a 
phvsical system that is derived from its structural description by 
qualitative simulation. Two problems with creating the 
envisionmcnt are the qualitative representation of quentlty and the 
detection of previously-unsuspcctcd points ot qualitative change. 
The representation presetlted here has the expressive power of 
differenil;ll equations, and the qualitarive envisionment strategy 
needed ior commonsense knowledge. A detailed example shows 
IICW it is able to detect a previously unsuspected point at which 
the system is in stable equilibrium. 

THE ENVISIONblENT 

Causal reasoning --- the ability to reason about how things work 
___ is central to expert performance at problem-solving and 
expinnatii:n in many different areas. The concept of an 
PiJV!SiOfJ/J?ent, developed by de Kleer [l&Z]. has provided a 
framework for most subsequent research on causal reasoning. A 
physical svstern is described by a structural descr/pf:on consisting 
of the context-independent behavioral repertoires of its individual 
colIlpowlts, and their connections in this ccntext. The 
envisionment describes the potential behaviors of the systam, and 
is produced by qualitative simulation of the structural description. 
It can be used directly to solve problems or answer questions, or 
can be turther analyzed to produce a functional description to 
explain wiry the system works the way it does. However, there is 
significant disagreement on several key questions about the 
structure ot the envislonment process: 

(I) How should continuously variable quantities be described for 
qualitative simulation? 

(2) How should the envisionment detect previously unsuspected 
points at which qualitatively significant changes take place? 

about quantities takes place, but remains agnostic about its 
properties. None of the above systems use qualitative reasoning 
to discover previously unsuspected points where qualitatively 
significant changes take place, although de Kleer’s “roller 
coaster” envisionment [l] is able to localize a change within a 
region before turning the problem over to a quantitative 
problem-solver. 

in this paper, I present a simple but very general descriptive 
language for structural descriptions. and a qualitative simulation 
process for producing the envisionment. Within the causal 
structure description, a system is described as a collection of 
~onslrci/!;:~ holding among timt’-~arylny, real-valued quar)fities. A 
value is a description of the real number corresponding to a 
quantity at a given tlnle-point. Thrs description consists of the 
ordinal relations holding amonq the dlffe:cnt values known to the 
envisionment, and the 10 value (the sign of the tirne derivative: + , 
0, -) of the quantity at that time-point. II constraint consists of 
rules for propagating information describmg the current value 
among the values of the related qu’lniiiies. The mechanism is 
inspired by the scheme developed by Steele [S], modified to 
propagate ordinal and IQ value assertions r&her than integers. 
The three types of constraints used in the example below are: 

Arithmetic. (X = Y + Z) The values of tile quantities must have 
the indicated relationship withln any time-point. 

Functional: (Y = M+(X)) Y is a strictly increasing (or 

decreasing (M-)) function of X. M+, indicates that zero 

corresponds to zero. 

Derivative: (Y = 6 X) At any time-point, Y is the rate of change 

of x. 

The envisionment consists of a finite set of time-points 
representing the qualitatively distinct states of the system, and 
values for each quantity at each time-point. Thus, the set of 
values that are part of the envisionment, and the ordinal relations 

De Kleer [I ,2] does qualitative perturbation analysis by describing that hold among them, can only increase as new inforrnation is 
. 

quantltles 111 terms of the.sign of the derivative (the IQ value) 
alone, but this is clearly too wean for other kinds of causal 
reasoning. Forbus [3] gets considerably greater power by 
representing each quantity in terms of the sign and magnitude of 
both tts amount and Its derivative. In practice, the power of his 
system depends only on the ordinal relations among quantities. 
Hayes [4] defines a modular quantuy space in which inference 

propagated across constraints from quantity to quantity: the 
qualitative simulation is monotonic. 

The qualitative simulation propagates inforrnation across the 
constraints to complete the description of the state of the system 
at the cllrrent time-point. After the propagation of information 
among values has settled down. the envisionment process 
examines the set of changing values In tl-le curlent time-point to 
determine the next qualitatively distmct state. Deiermining the 

This research was supported in part by NIH Grant LM 03603 
from the Nnrional Library of Medicine. 

next state depends critically on the concept of distinguished 
value. Initially, zero is the only distinguished value, but if the IQ 
vaiue of a quantity becomes zero. that value (a critical point) 
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becomes a new distinguished value. Two of the rules (the system 
currently has seven) for creating a new time-point to represent the 
next qualitatively distinct state of the system are: 

If the current value of a changing quantity is not Move To Limit: 
distinguished. and there is a distinguished vallrc in the direction of 
change. let the value of that quantity in the next time-point be the 
next distinguished value. 

Move From Point: If the current value of a changing quantity is 
distinguished, then let the next value be an undistinguished value 
in the given direction, closer to the starting point than any other 
distinguished value. 

When the description of the system’s current state is not 
sufficiently complete to determine the next state uniquely, the 
envisionment branches on the possible states of a particular IQ 
value or ordinal relation. If the qualitative simulation is unable to 
proceed, it may summarize the structural description to reduce its 
complexity at the cost of losing some information. The simulation 
terminates upon recognizing a contradiction, intractible 
branching, a cycle, or a quiescent system. 

When all the qualitatively significant points are specified in 
advance, Forbus [3) shows how an envrsronment process can 
determine the possible behaviors of a system. In order to 
demonstrate the power of this descriptive language and 
simulation process, the following example shows how, without 
cxtcrnat information, the simulation process deduces the 
existence of a previously-unsuspected distinguished value, and 
shows that a system moves to a stable equilibrium about that 
value. 

Consider a simple physical system consisting of a closed 
container of gas (at temperature T) that receives heat from a 
source (at Ts) and radiates heat into the air (T,). The problem is 

to deduce the existence of an equilibrium temperature (Te) 

between the temperatures of the heat source and the air, and to 
show that the system moves to a stable equilibrium about that 
temperature. Tables 1, 2, and 3 show the different stages of the 

qualitative simulation as it creates the envisionment.’ Table 1 
shows how the envisionment of the double-flow system branches 
in order to derive missing IQ values, how a new distinguished 
point is discovered on one of the branches, and how a set of 
corresponding values is discovered when several quantities take 
on dlstingurshed values simultaneously. Table 2 shows how the 
structural description is summarized when the first envisionment 
bogs down at an intractible branch. Table 3 shows how the 
summarized structural description, and the newly-discovered 
correspondence, allow the successor time-points on the 
remaining two branches to be determined uniquely so the 
envisionment can be completed. Diagnosis of a stable equilibrium 
takes place using the final envisionment structure, by showing 
that a perturbation from the final quiescent state places the 
system into one of the previously described states from which 
there is a restoring change. 

1. The envisionment diagrams (Tables 1 and 3) are read from top 
to bottom, each line following from those above. Each cell 
corresponds to a single time-point. Time progresses from top to 
bottom, and alternate branches are side by side. 

Stepping back to consider the general problem of representing 
commonsense knowledge of causality in physical systems, it is 
useful to highlight certain points. 
(1) The structural description language has approximately the 

expressive power of differential equations, plus the ability to 
specify functional constraints as additional states of partial 
knowledge of a relationship. 
(2) The description of quantitie s in terms of ordinal assertions 

and IQ values provides a qualitattve representation capable of 
high resolution where the problem demands it, and very low 
resolution elsewhere, without requiring a premature commitment 
about wtrich values shorlld be distmguished. 

(3) Tha accuracy and compactness ot the envisionment depends 
on the set of distinguished values that indicate potential 
qualitative changes. The ability io create new distinguished 
values corresponding to critical points of the time-varying 
quantities is important to discovering previously unsuspected 
points of qualitative change, and avoids the need for premature 
commitments. 

(4) Time is represented explicitly by !he structure of the set of 
time-points, rather than implicitly in the dynamic behavior of the 
simulator, so the value of each quantity at each time-point is tied 
into the network of ordinal assertions. 

(5) Each inference is irrevocable, so the state of knowledge 
becomes monotonically better specified as the simulation runs. 

At the time this is written, the propagation, envisionment, and 
summarization components have been completely imp!cmentcd 
but the perturbation analysis of the stable equrlibrium is done by 
hand. This paper is a summary of [5], which provides a complete 
specification for the represeniation and qualitative simulation. 
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Table 1. Double heat-flow. 

* The structural description of the heat-flow 
system is shown in Table 2(a). 
* In time-point ( l), starting with the condition 

that T, < T < T,, ordinal assertions propagate 

through the network, but fail to provide 
information about net f 1 ow. 
* In order to allow the derivative constraint to 

derive IQ values, the envisionment is split into 
cases according to the sign of net, f 1 ow. In 
the branches, with net f 1 ow specified, IQ 
values propagate through the network to 
complete the description. 
* Time-point ( 1E) is quiescent, with all IQ 

values steady, so new distinguished values 
are created, and the correspondence between 
quantitres taking on distinguished values is 
recorded. 

(net flow: 0) <=> (inflow: flow*) 
<=> (outflow: flow*) 
<=> (ATa: AT,*) 

<=> (ATs:ATs*) 
<=> (T: Te) 

* Time-points (1G) and (1L) each contain 
six changing values. However, not enough is 
known to show that they arrive at their limits 
srmultaneously, making the required case split 
intractibly large, so the envisionment halts. 

constant(Ta) 
const,ant( Ts) 

~-----------------_-~----~-----------~~~~~~~~~~~~~~~~~~~~----~~~~~~~~ ----------------_---~~----~------~----~~~~~~~~~~~~~~~~~-~----~~~~~~~~ 

(1) 
T, < T < T, 

ATa > 0 AT, > 0 
outflow > 0 inflow > 0 

net flow = unknown 

---------------------------------~----------------------------------- 

Case Split: relation(net flow, 0) 
--------------------------------------------------------------------- 

(1G) I ( 1L) I(lE) 
net flow > 0 I net flow < 0 I net flow = 0 
inflow > outflow > 0 1 0 < inflow < outflow i inflow = outflow > 0 
T, < 1 < T, 1 Ta < T < T, 1 T, < T < T, 

ATa, AT, > 0 I ATa* ATs > 0 I ATa- AT, > 0 
increasing(T) I decreasing(T) I steady(T) 
increasing(ATa) 1 decreasing(ATa) I steady(ATa) 
increasing(outflow) I increasing(outflow) I steaciy( outf 1 ow) 
decreasing(ATs) i increasing(ATs) I steady(ATs) 
decreasing( inflow) I increasing( inflow) I steady( inflow) 
decreasing(net flow) I incr eas ing( net flow) I steady( net f 1 ow) 

I I ----------_------------- --------------------___I I ------ ------=================I ==================== 

Table 1. Envisioning the double heat-flow system. 

Table 2(a,b): The arithmetic and functional parts of the causal structure description 
are simplified in three steps, applying the following simplification rules. 

(a-b) x+y=z & constant(y) => z = M+(x) 
(a-b) x+y=z & constant(z) q  > y = M-(x) 

(b-c) y = M+(M+(x)) => y = M+(x) 

(b-c) y = M-(M+(x)) => y = M-(x) 
(c-d) y = M-(x) - M+(x) => y = M-(x) 
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Table 2(c,d): The final step in summarizing the heat-flow description. The resulting 
structural description is less informntiv e than the original, but equally valid. 

Table 3. Summarized heat-flow. 

* The summarized structural description is 
shown in Table 2(d). 
* In time-point (l), ordinal assertions 

propagate as before, and the need for IQ 
values prompts a case split. 
* Time-point ( 1E) is quiescent as before. 
* The previously-determined correspondence 

makes it possible to infer the relation between 
T and T, in time-points ( 1G) and ( 1L). 

* Since time-points (1G) and ( 1L) each 
con t&n oniy two changing quantities and their 
limits are known to correspond, their 
subsequent states, (ZG) and (ZL), are easily 
and unambiguously determined by the Move 
To Limit rule. 
* Since the three branches of the split have 

identical end states, they are joined to create 
state (2). 

(T: Te) <=> (net flow: 0) 

~-~~~~~~~~--~~--------~-~-----~~~~~~~~~~~~~-~~~-~~~~-~-~~---~~~~~~~~ ---------------------------------------------------------------~---- 

(1) 
T, < T, < T, 
T, < T < T, 
net flow = unknown 

~~~~-~_~----~---------------------------------~------------------~~~ 

Case Split: relation(net flow, 0) 
-------------------------------------------------------------------- 

(1G) I ( IL) ItIE) 
net flow > 0 I net flow < 0 I net flow = 0 
T, < T < T, 1 T, < T < T, 1 T=T, 
increasing(T) I decreasing(T) I steady(T) 
decreasing( net flow) I increasing{ net flow) 1 steady( net flow) 

I I -----^------------------ I======---- ------------- I =====---- ---------- ------------------------ ----------------- -------------- 
(26) I (2L) 

T = T, 1 T=T, I 
net flow = 0 

I 
net flow = 0 

steady(T) steady(T) I 
steady(net flow) 

I 
steady(net flow) I 

----1---1--------------- ------------------------ ---=---================ I--- --- I -------------------------------------------------------------------- 
Case Join: identical outcomes on all branches 

-------------------------------------------------------------------- 

(2) 
net flow = 0 
T = T, 
steady(T) 
steady(net flow) 

-_-----------------------------~---~---~--~~~~~~-~-~-~~~~-~~~~~~~~~~ ---.-----------------_________^__________---------------------------- 

Table 3. Envisionment of the summarized double heat-flow description. 
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