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Abstract 

Statistical aggregate properties (e.g. mean, maximum, 

mode) have not previously been thought to “inherit” 

between sets. But they do in a weak sense, and a 

collection of such “weak” information can be combined in 

a rule-based architecture to get stronger information. 

I I Motivation 

S~~ppose we have conducted a census of all elephants 

in the world and we can definitely say that all elephants 

are gray. Then by set-to-subset inheritance of the “color” 

property, the set of elephants in Clyde’s herd must be 

gray, Clyde’s herd being some particular herd of 

elephants. 

This will not work for statistical aggregate properties 

such as maximum and mean. Suppose our census found 

that the longest elephant in the world is 27 feet long, and 

the average elephant 15 feet. This does not mean the 

longest elephant in Clyde’s herd is 27 feet, nor the 

average in the herd 15 feet. But a weak form of 

inheritance is present, for we can assign different degrees 

of Iikelihood to the following: 

This work is part of the Knowledge Base Management 

Systems Project, under contract ## N00039-82-G-0250 

from the Defense Advanced Research Projects Agency of 

the United States Department of Defense. The views and 

conclusions contained in this dcrcument are those of the 

author and should not be interpreted as representative of 

the official policies of DARPA or the US Government. 

I. “The longest elephant in Clyde’s herd is 30 
feet long.” 

2. “The average elephant in Clyde’s herd is 30 
feet long.” 

3. “The longest elephant in Clyde’s herd is 27 
feet long.” 

4. “The average elephant in Clyde’s herd is 27 
feet long.” 

5. “The longest elephant in Clyde’s herd is 16 

feet long.” 

6. “The average elephant in Clyde’s herd is 16 
feet long.” 

Statements 1 and 2 are impossible. Statement 3 is 

possible but a bit unlikely, whereas statement 4 is almost 

certainly impossible. Statement 5 is surprising and hence 

apparently unlikely, whereas 6 is quite reasonable. Since 

we don’t know anything of Clyde’s herd other khan that 

they are elephants, a kind of inheritance from the 

properties of elephants in general must be happening. 

The issue here is more important than elephants. 

Thousands of databases in existence s~tpport statistical 

questions about their contents. Exact answers to such 

questions may be very time-consuming for large data sets 

and/or remote access. Many users, especially non- 

statisticians, may be willing instead to accept much faster 

approximate answers via inheritance methods [5]. 
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2. Our four-characteristic approach 

We wish to address inheritance of the set properties 

maximum, mean, standard deviation, median, mode, fits to 

simple distributions, and correlations between different 

values of the same item. Our theory concerns set 

representation only (but sets of cardinality one can 

represent individuals). It concerns “definitional” sets 

primarily (those with absolute criteria for membership) as 

opposed to “natural kind” sets [l] (though degrees of set 

membership as in fuzzy set theory could be introduced). 

The theory mainly deals with extensions (exemplars), not 

intensions (meanings). It also only addresses the set- 

subset semantic relationship; however, often other 

relationships can be viewed this way by “atomization” of 

the included concepts, e.g. geographical containment 

may be seen as a set-subset relationship between sets of 

points. 

The key is to note that while in a few cases statistical 

properties inherit values exactly from set to set, in most 

cases they do not; but that there are characterizations of a 

numeric statistic that will inherit much more often: 

o an upper bound on its value 

l a lower bound on its value 

8 a best estimate of the value 

o a standard deviation of possibilities for the 
value 

Some examples: 

e An 
the 

upper bound on the 
maximum of the set. 

o A lower bound on the maximum 
the minimum of the set. 

a subset is 

of a subset is 

o A best estimate of the mean of a subset, in the 
absence of further information, is the mean of 
the set. 

l A standard deviation of the mean of a subset 
is approximately the standard deviation of the 
set times the square root of the difference of 
the reciprocals of the subset size and set size. 

The last also illustrates an important feature of statistical 

property inheritance, namely that functions (in the 

mathematical sense) of values may be inherited rather 

than the values themselves. But since the different values 

are so strongly coupled it seems fair to still call it 

“inheritance”. 

Inheritance of nonnumeric statistics such as mode can 

analogously be characterized by a best es?imate, a 

superset guaranteed to include all values, and an 

estimated relative frequency of the estimate among all 

possible values. Note this approach is a distinct 

alternative to often-arguable certainty factors for 

specifying partial knowledge. 

3. Inheritance types 

There are three “dimensions” of statistical inheritance: 

what statistic it concerns, which of the four 

abovementioned manifestations it addresses, and how it 

basically works. The main categories of the latter are: 

l Downwards inheritance. That is, from set to 
subset, as in the examples of the last section. 
This is the usual direction for statistical 
inheritance since it is usually the direction of 
greatest fanout: people tend to store 
information more for general concepts than 
specific concepts, for broadest utility. In 
particular, downwards inheritance from sets 
to their intersection is very common in human 
reasoning, much more so than reasoning with 
unions and complements of sets. 

e Upwards inheritance. Inheritance from 
subset to set occurs with set unions, in 
particular unions of disjoint sets which (a) 
seem easier for humans to grasp, and (b) 
have many nice inheritance properties (e.g. 
the largest elephant is the larger of the largest 
male and largest female elephants). 
Sampling, random or otherwise, to estimate 
characteristics of a population is another 
form of upwards inheritance, though with the 
special disadvantage of involving a non- 

definitional set. Upwards inheritance also 
arises with caching [4]. People may cache 
data on some small subsets important to them 
(like Clyde’s herd) in addition to general- 
purpose data. Upwards (as well as 
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downwards) inheritance is helpful for dealing 
with “intermediate” concepts above the 
cache but below general-purpose knowledge 
(e.g. the set of elephants on Clyde’s 
rangelands). 

o Lateral inheritance. A set can suggest 
characteristics of sibling sets of the same 
parent superset [2]. Two examples are set 
complements (i.e. the set of ail items not in a 
set, with respect to some universe), and when 
sibling sets differ only by an independent 
variable such as time or space, and there are 
constraints on the rate of change (i.e. 
derivatives) of numeric attributes between 
siblings (e.g. the stock market average on 
successive days). 

l Diagonal inheritance. An interesting hybrid of 
downwards and lateral inheritance is possible 
with statistical properties. Given statistics on 
the parent and some set of siblings, we can 
often “subtract” out the effect of the known 
siblings from the parent to get better 
estimates on the unknown siblings. For 
instance, the number of female elephants is 
the total number of elephants minus the 
number of male elephants. This also works 
for moment and extrema statistics. 

e Intra-concept inheritance. Inheritance can 
also occur between different statistics on the 
same set, if certain stalistics are more “basic” 
than others. For instance, mean can be 
estimated as the average of maximum and 
minimum, and thus can be said to “inherit” 
from them; people may reason this way, as in 
guessing of the center of a visual object from 
its contours. But in principle almost any 
direction is possible with numerical and 
nonnumerical relaxation techniques. 

o Value-description-level inheritance. Real- 
world property values, especially nonnumeric 
ones, can be grouped at different levels of 
detail, and inheritance is possible between 
ievels for the same set and same statistic. For 
instance, the number of different herds can 
be estimated from the number of different 
elephants and general knowledge of how 
many elephants are in a herd. 

l Inheritance-rule inheritance. Some sets are 
sufficiently “special” to have additional 
inheritance rules for all subsets or supersets. 
An example is an all-integer set, where for any 
subset an upper bound on the number of 
distinct values for that property is the ceiling 
on the range. 

4. Closed-world inferences 

Since there are many statistics, and even a small set 

can have many subsets, default reasoning is essential for 

efficiency with statistical properties. Inferences from the 

absence of explicit memory information are common in 

human reasoning [3]; in particular, the idea that 

“sufficiently important” sets whose statistics are not 

explicitly noted must be not “unusual” in regard to those 

statistics. We can define “sufficiently important” and 

“unusual” relative to what inheritance predicts. 

5. A production system architecture 

So many different kinds of inheritance (even jirst those 

applicable to the same concept), complicated 

combination and cascading of different inheritances, 

inheritance of functions of values rather than values, 

inheritance- inheritance -- all this classically suggests a 

production system architecture is needed. That is, the 

encoding of inheritance categories as production rules. 

There are two conflict resolution issues for the control 

structure of such an architecture: which rules to invoke, 

and how to resolve different answers from different rules. 

Many different inference paths can be followed in 

making a statistical estimate, even not including all the 

possible rearrangements of a set expression involving 

intersections, unions, and complements. Since these can 

give different final answers, it’s important to explore as 

many of these in parallel as possible, unlike most 

production systems where a single “best” alternative is 

desired. But some limits to parallelism have to be set for 
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complicated queries, and we are currently investigating 

“weakest-first ” inference. (Arithmetic must be 

generalized for operations on intervals.) 

Combining results from different inference paths is 

straightforward for numeric statistics. Intersect the 

ranges to get a cumulative range. Get the cumulative 

estimate by assuming independence for all estimates, 

combining as if their errors were characterized by normal 

distributions via the classical statistical formulas; and the 

cumulative standard deviation follows directly. Even with 

nonindependence in the latter calculations the estimate 

should not be off much, and the standard deviation for the 

two-path case is never more than 70% (3”‘) of what it 

should be. 

6. An application 

We are implementing a program that uses these ideas 

to answer statistical questions for a large database [5]. It 

uses several hundred rules from a variety of sources: 

mathematical definitions, extreme-value analysis of 

definitions, statistical theorems, exploratory data analysis, 

database dependency theory, statistical database 

inference security research, psychology of conceptua! 

classes, and general principles of information systems. 

As with many other “expert systems” in artificial 

intelligence, there is more fundamental mathematical 

theory -- in this case, nonlinear optirnization and cross- 

entropy rninimization [6] -- that underlies many of the 

rules, but is too intractable for all but the simplest cases to 

be of much use. 
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