
PROOF METHODS IN AN AGENDA-BASED,
NATURAL-DEDUCTION THEOREM PROVER

Mabry Tyson

Artificial Intelligence Center
SRI International, Menlo Park, CA 94025

ABSTRACT

This note describes several methods of finding
proofs used in APRVR, an agenda-based, natural-deduc-
tion theorem prover. APRSR retains a complete tree of
all pending or completed goals and is able to choose the
next goal to be processed from an agenda of pending goals.
Through this mechanism some proof methods can be
utilized that had been unavailable to an earlier prover that
was not agenda-based. One approach allows information
discovered in one path in an attempted proof to trigger
a case split in another part of the attempted proof
(NONLOCAL CASE SPLIT). Another procedure
enables better handling of splitting a conjunction (AND-
SPLIT) by making it possible to use more information in
determining which conjunct should be split off first.

I INTRODUCTION

APRVR ([3]) is based upon earlier work by W.
W. Bledsoe on his interactive theorem prover, IMPLY

(PI). Both P rovers are natural-deduction systems for
first-order logic that utilize the concepts of subgoaling,
backward chaining, and forward chaining. APRVR’s
control structure is flat, choosing goals from an agenda,
rather than being recursive, as IMPLY is, proceeding
from a goal to its subgoals only or exiting to its parent
goal. Using an agenda allows the theorem prover to try
briefly several possible paths that might lead to a proof,
thereby yielding more information about the paths. The
theorem prover can then spend more effort on the path
that appears most promising until the proof succeeds or
the prover decides that the path is not as attractive as
was first thought.

APRVR proves theorems in first-order predicate
calculus by first applying Skolemization to remove any

This research was performed at the University of Texas at Austin
and was supported in part by National Science Foundation under
Grant MCS 80-11417. Any opinions, findings, and conclusions or
recomendations expressed in this publication are those of the author
and do not necessarily reflect the views of the National Science
Foundation.

quantifiers before proving the resultant open formula. The
substitutions for free variables required during the proof
of a goal (or subgoal) are returned as the value of that
proof. If a goal is proved by generating subgoals, the
substitutions returned during the proof of one subgoal
may be needed for generating the remaining subgoals or
confirming that all the subgoals are consistent and can
therefore be combined as a proof of the goal.

II AND-SPLIT

When the conclusion of a goal consists of sever-
al conjuncts, the goal can be achieved by splitting it
into several subgoals, one for each conjunct. In the
propositional case, independent proofs of these subgoals
suffice to prove the goal. In first-order predicate
logic, the possible occurence of existential variables
common to several conjuncts complicates matters, so that
independent proofs of the conjuncts cannot be combined
into a proof of the goal if the substitutions for the
variables are in conflict. For example, in proving

WV’(4 A Q(W =+ U’(x) A QMK
we can not allow the independent proofs (after Skolem-
ization) of

and

W4 A Q(b) * Q(x)
to be combined because of the conflicting substitutions for
the common variable x.

One method (used in IMPLY) to avoid generating
the two independent but conflicting proofs is to first find
one of them and then apply the indicated substitution to
the remaining conjunct before proving it. In most cases, a
proof, if indeed any exists, of the remaining goal will not
cause a conflict, thus allowing the proof of the original
goal to be completed. In the example above, the second
goal would become

J’(u) A Q(b) * Q(a),
which is obviously unprovable.

225

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

This method of choosing one conjunct, proving
it first, and then using the indicated substitutions in
proving the remaining conjuncts is a sequential AND-split.
Proving the conjuncts one at a time is conceptually simple
and works efficiently most of the time.

Unfortunately this sequential nature leads to
problems. Let us consider the case in which the first
goal has several proofs with differing substitutions for the
common variables. If a theorem prover were to find all the
proofs it could possibly find, it might waste time trying
to find additional proofs after discovering the one that is
really needed. On the other hand, it might also waste
time if it stops looking for additional proofs once the
first has been found and, using the substitutions returned,
proceeds to try the (possibly) impossible remaining goals.
The theorem prover is trapped into trying the wrong
substitution simply because it had been returned by the
first proof found. If the theorem prover had found a
different first proof (or finds another one after realizing
that the first proof did not lead anywhere), the remaining
goals might be easily proved. In a recursive system, once
the proof attempt on the first conjunct has exited with
the first proof, there is no simple way to continue it.

The obvious way to mitigate this problem in an
agenda-based theorem prover is to allow the proof of
the first conjunct to be continued if the first proof does
not lead anywhere. Therefore, if the first proof leads
to a trapping substitution, a second proof would be
sought. While this is easy to describe, it is difficult
to put into practice. Blindly allowing the reactivation
of goals that have been proved once - simply because
there might have been another satisfying substitution -
leads to much wasted effort. It became clear to me in
my experimentation that restarting already proved goals
usually caused extraneous attempts to reprove goals that
did not need a different proof.

A less obvious method for reducing the trapping
problem also takes advantage of the agenda mechanism.
Instead of deciding which will be the first conjunct
to be proved, attempt to prove each of the conjuncts
individually, treating it as though it were the first. If
the first proof found for any of the conjuncts uses the
substitutions necessary for the desired solution, that
solution will be found without having to restart any
already proven goal.

However, this technique entails duplication of
effort. If a, goal has N conjuncts, N! subgoals could
eventually be created. Thus, rather than letting this
technique run unchecked, APRVR creates goals for
each conjunct, schedules them on the agenda, and also
schedules an additional goal on the agenda for subsequent
examination of the results of those goals after some effort
has been expended on them. If some of the subgoals
have then been proved, the associated secondary subgoals
(created by applying the returned substitutions to the

remaining conjuncts) are allowed to remain active while
the attempts to prove the other conjuncts are deactivated.
If none of the initial subgoals have been proved, one of the
conjuncts is chosen as the first conjunct while the other
proof attempts are deactivated.

This technique should be valuable wherever some
of the conjuncts are critical in assigning substitutions,
while others simply verify that the result of applying the
substitutions has certain common properties. A simple
example in group theory would be a goal whose conclusion
is the conjunction

x-u = a.2 A x-u = e,

where e is the identity element, x a variable, and a a
constant. The first conjunct may have many satisfying
substitutions (e.g., replacing x with e) while the second
one is more critical. With this technique, both conjuncts
would be tried; the quick solution for the second conjunct
(substituting a -’ for x) would be found and applied to
the first conjunct, thereby leading readily to a proof.

III NONLOCAL CASE SPLIT

A very interesting use of the agenda is the nonlocal
generation of case splits. In attempting to prove a
theorem, people often “paint themselves into a corner”
- that is, they get to a point at which, in some cases,
the subgoal in question is false. For the other cases, the
subgoal is provable. As an example, a proof of a theorem
in field theory might reduce to proving (u.b = uec) + b = c.
Two cases exist, a # 0 and a = 0, of which the first is
provable but not the second. At this point a person will
consider why one case is impossible and will ascertain the
reason for this. He will then back up in his proof and try
a different proof for that case. In this example, there may
be another proof to prove the case where a is 0 (or it may
prove that a cannot be 0).

In certain situations (such as when triggered by
an OR in the hypothesis or lemmas), APRVR will try
to prove a goal by doing a case split; for each case,
a separate subgoal is generated with that case as an
added hypothesis. When starting a case split, APRVR
determines the amount of effort it wants to expend on that
goal before concluding that it is perhaps not provable. It
then reschedules the goal that generated the case split
for activation when that effort has been completed. If
all the cases are proved beforehand, the goal is proved
and the value is returned. But, if APRVR does not prove
the goal within the allotted time, a different procedure
must be attempted (but the present case split is left
on the agenda and could still succeed). If some of the
cases have been proved and the case split is ground (ie.,
contains no variables), APRVR will try the case split
earlier in the proof in the hope that the failing cases will

226

be provable from a higher point in the tree. (The provable
cases can always be proved by the same path as before.)
Consequently, APRSR will back up along the path of the
proof to an appropriate point, where it will then attempt
the case split.

As an example, APRSR might decide to split on
whether a constant, a, is less than, greater than, or equal
to 0. APRVR would create three subgoals and enter them
in the agenda along with their parent goal, which is now
rescheduled. Suppose the second two subgoals get proved
quickly, but the first subgoal, involving u<O, has not been
proved before the parent goal again reaches the head of
the agenda; APRVR will then look for a higher goal on
which to try the case split. The only new proof to generate
there is the proof for the case a<O.*

APRVR is not as intelligent as a human theorem
prover, so it can not make as clever a decision about where
to try the case split. At present, APRVR examines the
structure of the proof and backs the case split as far up
the proof tree as possible until a goal is reached at which
backing up any farther would reach a goal that would not
necessarily be provable for those cases that were successful
at a lower level. This might be just below an AND-split
goal if APRJR had been working on the first branch of
the AND-split and had yet to do the second branch. The
goal stopped at is provable, given the right case, by the
path already taken. The parent goal would not necessarily
be proved, given that same case (since it is not known yet
whether the second branch is provable).

Assuming the case split is necessary for a proof,
the chosen point may not be optimal - yet not be a bad
choice. If the proper point for the case split is below that
selected, only a little extra work is required in passing
the cases down to where the case split is necessary. If
the proper point is actually above where APRVR chooses,
then the proofs of the chosen goal for whatever cases do
work will be reused when they are requested from above.
The advantage of choosing where APRVR chooses, and
no higher, is that any higher goal may not be provable for
any of the cases. Further analysis of what substitutions
are made, as well as where and why some of the cases fail,
might lead to a better choice of a goal on which to try the
case split.

l-V OTHER PROPOSED METHODS

There are surely other methods available to a
prover with an agenda mechanism like that of APRa.
More nonlocal methods might be found in those instances

*
Although the examples given are for cases involving inequalities,
this nonlocal case split mechanism works on any type of case. The
backing-up of unproved cases in [l] is somewhat related, but is
limited to inequalities.

in which information from one part of the proof might
affect what is being done elsewhere. Perhaps if a goal were
found to be false (possibly by a counterexample), APRVR
could trace back up the proof tree to the point at which
a false ancestor of this goal had been generated. Other,
similar goals might also be purged.

APRVR uses demon goals to monitor the progress
on AND-splits and case splits. These goals are placed
on the agenda so that, when they are chosen, APRVR
pauses in its normal attempts at finding a proof and stops
to analyze what is happening in the part of the proof
the demon goal was watching. These demon goals might
be used in other contexts to monitor what APRVR is
doing. While the idea of self-monitoring is not unique to
agenda mechanisms, it was rather easy to implement by
scheduling the demons in the same way as ordinary goals.

Since APRVR keeps the entire proof tree, if one
goal is found similar (analogous) to another, the successful
proof of one could be used as a guide in proving the other
and modified wherever the similarity broke down. There
are a number of problems to be overcome to accomplish
this, but it should be possible.

SUMMARY

Although I had expected the agenda mechanism’s
major source of power to be the ability to make a
better choice of paths, I discovered new heuristics that
would aid in finding proofs that were not possible in the
recursive IMPLY theorem prover. The only drawback
of the agenda-based APRVR was a relative weakness
in man-machine interaction, which is one of IMPLY’s
strengths. This weakness consists of the agenda system’s
tendency to change contexts more freely than is done by
people. APRVR was capabile of having all the power of
IMPLY (although certain extensions to IMPLY were not
implemented) - and even more. It proved a number of
standard problems given to theorem provers; the most
difficult new problem (suggested by W. W. Bledsoe)
proved by APRVR comes from part of a proof that a
continuous function attains its minimum over a closed
region.

AM8:

vt[L>t =b F(L)gp)]

A \ilx[z>L * 3+5x A +)>f’(t)]]

A VW gg[f’(g)lF(w) A Vx’[@‘)<f’(w) * g<x’]]

* 3uVt’F(u)<F(t’)

Although this problem depends heavily on inequal-
ities, no special-purpose machinery was incorporated
(which might have expedited the proof). APRVR used

227

both the AND-split and nonlocal case split mechanisms
presented here in finding the proof without any human
intervention.

REFERENCES

[l] W. W. Bledsoe and M. Tyson, “Typing and Proof
by Cases,” in Machine Intelligence 8, D. Michie,
ed. (Ellis Horwood Limited, Chichester, Sussex,
England, 1977).

[2] W. W. Bledsoe and M. Tyson, “The UT Interactive
Prover,” ATP-17A, University of Texas at Austin,
Austin, Texas (1978).

[3] W. M. Tyson, APRVR: A Priority-Ordered Agenda
Theorem Prover, Ph.D. Dissertation, University of
Texas at Austin, Austin, Texas (1981).

228

