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ABSTRACT 

This note describes several methods of finding 
proofs used in APRVR, an agenda-based, natural-deduc- 
tion theorem prover. APRSR retains a complete tree of 
all pending or completed goals and is able to choose the 
next goal to be processed from an agenda of pending goals. 
Through this mechanism some proof methods can be 
utilized that had been unavailable to an earlier prover that 
was not agenda-based. One approach allows information 
discovered in one path in an attempted proof to trigger 
a case split in another part of the attempted proof 
(NONLOCAL CASE SPLIT). Another procedure 
enables better handling of splitting a conjunction (AND- 
SPLIT) by making it possible to use more information in 
determining which conjunct should be split off first. 

I INTRODUCTION 

APRVR ( [3]) is based upon earlier work by W. 
W. Bledsoe on his interactive theorem prover, IMPLY 

(PI). Both P rovers are natural-deduction systems for 
first-order logic that utilize the concepts of subgoaling, 
backward chaining, and forward chaining. APRVR’s 
control structure is flat, choosing goals from an agenda, 
rather than being recursive, as IMPLY is, proceeding 
from a goal to its subgoals only or exiting to its parent 
goal. Using an agenda allows the theorem prover to try 
briefly several possible paths that might lead to a proof, 
thereby yielding more information about the paths. The 
theorem prover can then spend more effort on the path 
that appears most promising until the proof succeeds or 
the prover decides that the path is not as attractive as 
was first thought. 

APRVR proves theorems in first-order predicate 
calculus by first applying Skolemization to remove any 
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quantifiers before proving the resultant open formula. The 
substitutions for free variables required during the proof 
of a goal (or subgoal) are returned as the value of that 
proof. If a goal is proved by generating subgoals, the 
substitutions returned during the proof of one subgoal 
may be needed for generating the remaining subgoals or 
confirming that all the subgoals are consistent and can 
therefore be combined as a proof of the goal. 

II AND-SPLIT 

When the conclusion of a goal consists of sever- 
al conjuncts, the goal can be achieved by splitting it 
into several subgoals, one for each conjunct. In the 
propositional case, independent proofs of these subgoals 
suffice to prove the goal. In first-order predicate 
logic, the possible occurence of existential variables 
common to several conjuncts complicates matters, so that 
independent proofs of the conjuncts cannot be combined 
into a proof of the goal if the substitutions for the 
variables are in conflict. For example, in proving 

WV’(4 A Q(W =+ U’(x) A QMK 
we can not allow the independent proofs (after Skolem- 
ization) of 

and 

W4 A Q(b) * Q(x) 
to be combined because of the conflicting substitutions for 
the common variable x. 

One method (used in IMPLY) to avoid generating 
the two independent but conflicting proofs is to first find 
one of them and then apply the indicated substitution to 
the remaining conjunct before proving it. In most cases, a 
proof, if indeed any exists, of the remaining goal will not 
cause a conflict, thus allowing the proof of the original 
goal to be completed. In the example above, the second 
goal would become 

J’(u) A Q(b) * Q(a), 
which is obviously unprovable. 
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This method of choosing one conjunct, proving 
it first, and then using the indicated substitutions in 
proving the remaining conjuncts is a sequential AND-split. 
Proving the conjuncts one at a time is conceptually simple 
and works efficiently most of the time. 

Unfortunately this sequential nature leads to 
problems. Let us consider the case in which the first 
goal has several proofs with differing substitutions for the 
common variables. If a theorem prover were to find all the 
proofs it could possibly find, it might waste time trying 
to find additional proofs after discovering the one that is 
really needed. On the other hand, it might also waste 
time if it stops looking for additional proofs once the 
first has been found and, using the substitutions returned, 
proceeds to try the (possibly) impossible remaining goals. 
The theorem prover is trapped into trying the wrong 
substitution simply because it had been returned by the 
first proof found. If the theorem prover had found a 
different first proof (or finds another one after realizing 
that the first proof did not lead anywhere), the remaining 
goals might be easily proved. In a recursive system, once 
the proof attempt on the first conjunct has exited with 
the first proof, there is no simple way to continue it. 

The obvious way to mitigate this problem in an 
agenda-based theorem prover is to allow the proof of 
the first conjunct to be continued if the first proof does 
not lead anywhere. Therefore, if the first proof leads 
to a trapping substitution, a second proof would be 
sought. While this is easy to describe, it is difficult 
to put into practice. Blindly allowing the reactivation 
of goals that have been proved once - simply because 
there might have been another satisfying substitution - 
leads to much wasted effort. It became clear to me in 
my experimentation that restarting already proved goals 
usually caused extraneous attempts to reprove goals that 
did not need a different proof. 

A less obvious method for reducing the trapping 
problem also takes advantage of the agenda mechanism. 
Instead of deciding which will be the first conjunct 
to be proved, attempt to prove each of the conjuncts 
individually, treating it as though it were the first. If 
the first proof found for any of the conjuncts uses the 
substitutions necessary for the desired solution, that 
solution will be found without having to restart any 
already proven goal. 

However, this technique entails duplication of 
effort. If a, goal has N conjuncts, N! subgoals could 
eventually be created. Thus, rather than letting this 
technique run unchecked, APRVR creates goals for 
each conjunct, schedules them on the agenda, and also 
schedules an additional goal on the agenda for subsequent 
examination of the results of those goals after some effort 
has been expended on them. If some of the subgoals 
have then been proved, the associated secondary subgoals 
(created by applying the returned substitutions to the 

remaining conjuncts) are allowed to remain active while 
the attempts to prove the other conjuncts are deactivated. 
If none of the initial subgoals have been proved, one of the 
conjuncts is chosen as the first conjunct while the other 
proof attempts are deactivated. 

This technique should be valuable wherever some 
of the conjuncts are critical in assigning substitutions, 
while others simply verify that the result of applying the 
substitutions has certain common properties. A simple 
example in group theory would be a goal whose conclusion 
is the conjunction 

x-u = a.2 A x-u = e, 

where e is the identity element, x a variable, and a a 
constant. The first conjunct may have many satisfying 
substitutions (e.g., replacing x with e) while the second 
one is more critical. With this technique, both conjuncts 
would be tried; the quick solution for the second conjunct 
(substituting a -’ for x) would be found and applied to 
the first conjunct, thereby leading readily to a proof. 

III NONLOCAL CASE SPLIT 

A very interesting use of the agenda is the nonlocal 
generation of case splits. In attempting to prove a 
theorem, people often “paint themselves into a corner” 
- that is, they get to a point at which, in some cases, 
the subgoal in question is false. For the other cases, the 
subgoal is provable. As an example, a proof of a theorem 
in field theory might reduce to proving (u.b = uec) + b = c. 
Two cases exist, a # 0 and a = 0, of which the first is 
provable but not the second. At this point a person will 
consider why one case is impossible and will ascertain the 
reason for this. He will then back up in his proof and try 
a different proof for that case. In this example, there may 
be another proof to prove the case where a is 0 (or it may 
prove that a cannot be 0). 

In certain situations (such as when triggered by 
an OR in the hypothesis or lemmas), APRVR will try 
to prove a goal by doing a case split; for each case, 
a separate subgoal is generated with that case as an 
added hypothesis. When starting a case split, APRVR 
determines the amount of effort it wants to expend on that 
goal before concluding that it is perhaps not provable. It 
then reschedules the goal that generated the case split 
for activation when that effort has been completed. If 
all the cases are proved beforehand, the goal is proved 
and the value is returned. But, if APRVR does not prove 
the goal within the allotted time, a different procedure 
must be attempted (but the present case split is left 
on the agenda and could still succeed). If some of the 
cases have been proved and the case split is ground (ie., 
contains no variables), APRVR will try the case split 
earlier in the proof in the hope that the failing cases will 
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be provable from a higher point in the tree. (The provable 
cases can always be proved by the same path as before.) 
Consequently, APRSR will back up along the path of the 
proof to an appropriate point, where it will then attempt 
the case split. 

As an example, APRSR might decide to split on 
whether a constant, a, is less than, greater than, or equal 
to 0. APRVR would create three subgoals and enter them 
in the agenda along with their parent goal, which is now 
rescheduled. Suppose the second two subgoals get proved 
quickly, but the first subgoal, involving u<O, has not been 
proved before the parent goal again reaches the head of 
the agenda; APRVR will then look for a higher goal on 
which to try the case split. The only new proof to generate 
there is the proof for the case a<O.* 

APRVR is not as intelligent as a human theorem 
prover, so it can not make as clever a decision about where 
to try the case split. At present, APRVR examines the 
structure of the proof and backs the case split as far up 
the proof tree as possible until a goal is reached at which 
backing up any farther would reach a goal that would not 
necessarily be provable for those cases that were successful 
at a lower level. This might be just below an AND-split 
goal if APRJR had been working on the first branch of 
the AND-split and had yet to do the second branch. The 
goal stopped at is provable, given the right case, by the 
path already taken. The parent goal would not necessarily 
be proved, given that same case (since it is not known yet 
whether the second branch is provable). 

Assuming the case split is necessary for a proof, 
the chosen point may not be optimal - yet not be a bad 
choice. If the proper point for the case split is below that 
selected, only a little extra work is required in passing 
the cases down to where the case split is necessary. If 
the proper point is actually above where APRVR chooses, 
then the proofs of the chosen goal for whatever cases do 
work will be reused when they are requested from above. 
The advantage of choosing where APRVR chooses, and 
no higher, is that any higher goal may not be provable for 
any of the cases. Further analysis of what substitutions 
are made, as well as where and why some of the cases fail, 
might lead to a better choice of a goal on which to try the 
case split. 

l-V OTHER PROPOSED METHODS 

There are surely other methods available to a 
prover with an agenda mechanism like that of APRa. 
More nonlocal methods might be found in those instances 

* 
Although the examples given are for cases involving inequalities, 
this nonlocal case split mechanism works on any type of case. The 
backing-up of unproved cases in [l] is somewhat related, but is 
limited to inequalities. 

in which information from one part of the proof might 
affect what is being done elsewhere. Perhaps if a goal were 
found to be false (possibly by a counterexample), APRVR 
could trace back up the proof tree to the point at which 
a false ancestor of this goal had been generated. Other, 
similar goals might also be purged. 

APRVR uses demon goals to monitor the progress 
on AND-splits and case splits. These goals are placed 
on the agenda so that, when they are chosen, APRVR 
pauses in its normal attempts at finding a proof and stops 
to analyze what is happening in the part of the proof 
the demon goal was watching. These demon goals might 
be used in other contexts to monitor what APRVR is 
doing. While the idea of self-monitoring is not unique to 
agenda mechanisms, it was rather easy to implement by 
scheduling the demons in the same way as ordinary goals. 

Since APRVR keeps the entire proof tree, if one 
goal is found similar (analogous) to another, the successful 
proof of one could be used as a guide in proving the other 
and modified wherever the similarity broke down. There 
are a number of problems to be overcome to accomplish 
this, but it should be possible. 

SUMMARY 

Although I had expected the agenda mechanism’s 
major source of power to be the ability to make a 
better choice of paths, I discovered new heuristics that 
would aid in finding proofs that were not possible in the 
recursive IMPLY theorem prover. The only drawback 
of the agenda-based APRVR was a relative weakness 
in man-machine interaction, which is one of IMPLY’s 
strengths. This weakness consists of the agenda system’s 
tendency to change contexts more freely than is done by 
people. APRVR was capabile of having all the power of 
IMPLY (although certain extensions to IMPLY were not 
implemented) - and even more. It proved a number of 
standard problems given to theorem provers; the most 
difficult new problem (suggested by W. W. Bledsoe) 
proved by APRVR comes from part of a proof that a 
continuous function attains its minimum over a closed 
region. 

AM8: 

vt[L>t =b F(L)gp)] 

A \ilx[z>L * 3+5x A +)>f’(t)]] 

A VW gg[f’(g)lF(w) A Vx’[@‘)<f’(w) * g<x’]] 

* 3uVt’F(u)<F(t’) 

Although this problem depends heavily on inequal- 
ities, no special-purpose machinery was incorporated 
(which might have expedited the proof). APRVR used 
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both the AND-split and nonlocal case split mechanisms 
presented here in finding the proof without any human 
intervention. 
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