
Multiple Inheritance in Smalltalk- 

Alan H. Borning 
Computer Science Department, FR-35 

University of Washington 
Seattle, WA 98195 

Daniel H. H. lngalls 
Xerox Palo Alto Research Center 

3333 Coyote Hill Road 
Palo Alto, CA 94304 

Abstract 

Smalltalk classes may be arranged in hierarchies, so that a 

class can inherit the properties of another class. In the standard 

Smalltalk language, a class may inherit from only one other class. 

In this paper we describe an implementation of multiple 

inheritance in Smalltalk. 

1. Introduction 
Smalltalk is a powerful interactive language based on the idea 

of objects that communicate by sending and receiving messages 

[Ingalls 78, LRG 81, Goldberg 821. Every Smalltalk object is an 

instance of some class. Classes are organized hierarchically, so 

that a new class is normally defined as a subclass of an existing 

class. The subclass inherits the instance storage requirements 

and message protocol of its superclass. It may add new 

information of its own, and may override inherited responses to 

messages. 

In standard Smalltalk, a class can be a subclass of only a 

single superclass. On occasion, this restriction is undesirable and 

leads to unnatural coding styles. For example, the Smalltalk 

system includes a class Transcript that displays and records 

notification messages and the like. It is declared to be a subclass 

of Window, but also has the message protocol of a WriteStream to 

which one can append characters. Since it cannot be a subclass 

of both Window and WriteStream, the necessary methods for 

stream behavior must all be duplicated in Transcript. Such 

duplication is unmodular. If some method for streams is added or 

modified, the class Transcript does not automatically feel this 

change (as it would if it were a subclass of WriteStream). 

The natural solution is to allow classes to be subclasses of more 

than one superclass. In this paper we describe an implementation 

of multiple superclasses, which is now available in the Smalltalk- 

80 system used within Xerox PARC. 

2. Semantics of Multiple Superclasses 
A class may have any number of superclasses; however, an 

instance is always an instance of precisely one class. 

2.1. Message Handling 

When an instance receives a message, it first checks the 

method dictionary of its own class for a method for receiving that 

message. If none is found, it searches the method dictionaries of 

its immediate superclasses, then their superclasses, and so on. If 

a single method is found, then it is run. If no method or more than 

one method is found, an error message is issued. The overriding 

of inherited methods is still allowed; it is an error only if a class 

with no method of its own inherits different methods from two or 

more of its superclasses. Further, it is not an error if the same 

method is inherited via several paths. (This is a simplified 

explanation; Section 4 describes our actual implementation.) 

2.2. Access to Overridden Inherited Methods 

In single-superclass Smalltalk, the programmer can access an 

inherited overridden method using the reserved word super. For 

example, in code defined in a given class C, the inherited method 

for copy may be invoked using the expression super copy, even if 

C itself has a method for copy. 

This mechanism may be insufficient in the presence of multiple 

superclasses -- for example, if C inherits two different methods for 

copy, the user needs a way to indicate which is wanted. To allow 

for this, we extend the syntax of Smalltalk by adding compound 

selectors consisting of a class name, followed by a period, 

followed by the actual selector, e.g. Object.copy. When one of 

these compound selectors is used in a message, the lookup for 

the method starts with the class named in the compound selector. 

When there is no ambiguity, it is still convenient to be able to 

say “use the method inherited from my superclass” without 

naming that superclass. In analogy with the above form of 

compound selector, this can be accomplished by writing e.g. 

self super.copy. 

234 

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved. 



Finally, there are times when one would like to invoke all the 

inherited methods for a given selector, rather than just one of 

them; the principal example of this is for the initialize method. To 

accomplish this, the programmer would write self a//.initia/ize. It 

would be straightforward to add other sorts of method 

combination schemes using this basic mechanism. 

3. Examples of Using Multiple Inheritance 
In this section we present a number of examples that illustrate 

the usefulness of multiple inheritance. 

3.1. Simula-style Linked Lists 

Simula, which has a single-superclass inheritance hierarchy, 

defines a list-processing package that supports doubly-linked 

lists [Birtwistle 731. The class Link specifies that each of its 

instances contain a reference to a successor and to a 

predecessor object. Subclasses of Link may then be defined that 

inherit this ability to be included in linked lists. An analogous class 

may be easily defined in Smalltalk. (An advantage of 

implementing linked lists in this way, rather than having a separate 

link object that simply points to an object X in the list, is that X can 

know about the list in which it resides.) 

However, there is a problem with the class Link in both Simula 

and single-superclass Smalltalk. Given an arbitrary existing class 

C, unless C already has Link in its superclass hierarchy, a 

programmer cannot use C in defining a new subclass that also has 

the properties of a Link. 

Multiple superclasses provide a natural solution. For example, 

if the programmer wants to make objects that are like windows 

and can also be included rn doubly-linked lists, he or she can 

simply define a new class Queueable Window that is a subclass of 

both Window and Link. The new class will inherit the instance 

state requirements and message protocol of both Window and 

Link, yielding the desired behavior. 

3.2. Other Examples 

As mentioned in the introduction, another situation in which 

multiple inheritance is useful is in defining the class Transcript as 

a subclass of Window and of WriteStream. 

To take another example from the standard Smalltalk- 

system, a number of kinds of streams are defined, including 

ReadStream, WriteStream, and Read WriteStream. 

ReadWriteSfream is rather arbitrarily declared to be a subclass of 

WriteStream, with the extra methods needed for ReadStream 

behavior copied by the programmer. Using our new system, 

ReadWrifeSfream is naturally defined as a subclass of both 

ReadStream and WriteStream. 

3.3. Pool Variables 

This last example is of a somewhat different nature. In addition 

to instance variables, the Smalltalk- language allows the 

programmer to define class variables that are shared by all 

instances of a given class and its subclasses. However, on 

occasion, the programmer wants variables that are to be shared 

by a number of non-hierarchical classes, but which aren’t properly 

declared to be global variables. A mechanism for handling this 

exists already: one may declare a dictionary of pool variables that 

may be shared among several classes. (An example of this is the 

FilePool of constants and variables that are shared by all the 

classes used in file I/O.) 

Multiple superclasses provide a more elegant solution. Rather 

than using pool variables, one can for example define a class 

FileOblect that has class variables corresponding to all the 

variables that used to be in FilePool. Each of the file classes can 

now be made a subclass of FileObjecf as well as of its old 

superclass, so that it has access to these shared variables. In this 

way, the pool mechanism becomes unnecessary and could be 

eliminated from the language. 

4. Implementation 

4.1. Finding the Right Method to Receive a Message 

Our implementation of multiple inheritance is a compromise 

between the extremes of strict runtime method lookup and 

copying down inherited methods from all superclasses. 

In the standard Smalltalk- system, methods inherited from 

superclasses are looked up dynamically. This has the advantage 

that the system is not cluttered with copied methods, and that 

there are no copies to update when a method is edited. An 

alternative would be to copy the inherited methods down into each 

subclass. This would make finding the methods easier at runtime, 

at the expense of greater code size and updating complexity. 

In our implementation of multiple inheritance, the standard 

dynamic lookup scheme is used for methods on the chain 

consisting of the first superclass of each class. If a class C has 

more than one superclass, at the time C is created it checks each 

message to which it can respond. If the appropriate method 

would be found by the dynamic lookup, nothing is done. However, 

if the appropriate method is in some other superclass, then the 

code for that method is recompiled in C’s method dictionary, so 

that it will be found at run time. 

Finally, if there are conflicting inherited methods for a given 

selector, an error method is compiled in C for that selector and the 

user is notified. These error methods are put into a special 

category, making it easy for the user to browse to them and to 

resolve the conflicts as necessary. 

235 



4.2. Implementation of Compound Selectors 

As described in Section 2.2, the programmer can access 

inherited methods using constructs such as se/f Object.copy, 

self super.copy, and self all.inifialize. To implement these 
extensions, we changed the Smalltalk parser to treat compound 

selectors as single symbols, so that the code that is compiled in C 

for e.g. self B.copy actually sends the selector &copy. The first 

time this is executed, no method for B.copy will be found. When 

this occurs, the interpreter invokes Object 

messageNotUnderstood. The usual behavior at this point is to 

bring up an error window. However, we modified Object 

messageNofUndersfood to first check for compound selectors. If 

one is found, then the system attempts to compile an appropriate 

method for that compound selector by first verifying that f3 is a 

superclass of C, and then looking for a copy method in B or its 

superclasses. If one is found, that method is recompiled in C 

under the selector B.copy. The system then resends the message, 

whereupon it will find the newly inserted method. The next time 

&copy is sent, this method will be found, making the operation 

efficient. Selectors such as super.copy and alLinitialize are 

handled by the same mechanism. 

4.3. Instance State 

A subclass inherits all the instance field requirements of its 

superclasses, and can specify additional fields of its own. There is 

only one copy of fields inherited from a superclass via two 

inheritance paths. In our current implementation, it is an error if 

there are different inherited instance fields with the same name. 

(One of our previous experimental implementations [Borning 801 

included a mechanism similar to the compound selector construct 

that allowed the programmer to disambiguate conflicting field 

names. We may re-introduce this mechanism if the present 

restriction proves too burdensome.) 

To access or store into instance fields, the bytecodes produced 

by the Smalltalk compiler include instructions such as “load 

instance field 1”. It is of course essential that code inherited from 

superclasses use the correct field positions for the subclass. Our 

scheme takes care of this in the following manner. The instance 

fields are arranged so that the fields inherited from the 

superclasses on the dynamic lookup chain have the same 

positions as they do in the superclasses. (This is the same 

situation as in single-superclass Smalltalk.) In general, fields 

inherited from other superclasses won’t be in the same positions, 

but when the code for methods from these other superclasses is 

recompiled into the new subclass, the field positions are adjusted 

appropriately. As an optimization, before recompiling a method 

from a superclass the system checks if the offsets of all the fields it 

references are the same in the subclass. If this is the case, then 

the system simply copies a pointer to the original method, rather 

than recompiling it. 

4.4. Dynamic Updating 

In the Smalltalk environment, the user can add, delete, and edit 

methods incrementally, and then immediately make use of the 

changed code. In our multiple-inheritance implementation, some 

updating may be necessary when such changes are made. If a 

method is edited which has been recompiled or copied into some 

subclasses, then the newly edited method is recompiled or copied 

into subclasses as necessary. Similarly, if a method is added or 

deleted, it may affect which inherited method should be used, and 

may require changes in the copied inherited methods. Again, the 

system takes care of this updating automatically. 

If methods with compound selectors (e.g. super.prinfOn:) have 

been automatically compiled into some subclasses, then these 

methods may be invalid as well. Each such method that may no 

longer be valid is simply deleted; as described above, it will be 

recompiled automatically the first time a message is sent that 

invokes it. 

4.5. A Note on the Implementation Process 

The changes required to add multiple inheritance to Smalltalk- 

80 are only a few pages of Smalltalk code. For example, changing 

the Smalltalk syntax to allow compound selectors of the form 

Poinf.copy or Point. + required a change to only one method. 

Moreover, no changes to the Smalltalk- virtual machine were 

required. There are few other programming environments in 

which such a fundamental extension could be made so easily. 

5. Relation to other Work 
A number of other systems have used multiple inheritance. 

Among the systems implemented in Smalltalk, the constraint 

laboratory ThingLab [Borning 811 and the PIE knowledge 

representation language [Goldstein and Bobrow 801 both 

supported multiple inheritance. The authors have also 

implemented some experimental predecessors of the present 

system [Borning 801. 

Some extensions to Lisp allow the use of similar object-oriented 

programming techniques. The “flavors system” in MIT Lisp 

Machine Lisp [Cannon 801 allows an object to be defined using 

several flavors (analogous to multiple superclasses); this system 

also contains an extensive repertoire of method combination 

techniques for combining inherited information. Another object- 

oriented Lisp extension with multiple inheritance is the LOOPS 

system [Bobrow and Stefik 821, implemented in Interlisp. 

The Traits system [Curry 821, imbedded in the Mesa system, is 

yet another multiple inheritance implementation. It has received 

extensive use in the coding of the Xerox Star office information 

system. 

236 



References 

[Birtwistle 731 Birtwistle, G.M., Dahl, O.-J., Myhrhaug, B., and 
Nygaard, K. 
SIMULA Begin. 

Auerbach Press, 1973. 

[Bobrow and Stefik 821 

[Borning 801 Borning, A.H. 
Multiple Inheritance in Smalltalk. 
1980. 
Unpublished report, Learning Research Group, 

Xerox PARC. 

[Borning 811 Borning, A.H. 
The Programming Language Aspects of 

ThingLab, A Constraint-Oriented Simulation 
Laboratory. 

ACM Transactions on Programming Languages 

and Systems 3(4):353-387, October, 1981. 

[Cannon 801 Cannon, H.I. 
Flavors. 
Technical Report, MIT Artificial Intelligence 

Lab, 1980. 

[Curry 821 Curry, G., Baer, L., Lipkie, D., and Lee, B. 
Traits: An Approach to Multiple Inheritance 

Subclassing. 
In ACM-SIGOA Conference on Office 

Automation Systems. ACM, June, 1982. 

[Goldberg 821 Goldberg, A.J., Robson, D., and Ingalls, D.H.H. 
Smalltalk-80: The Language and its 

Bobrow, D.G., and Stefik, M.J. 
LOOPS: An Object Oriented Programming 

System for Interlisp. 
1982. 

Implementation. 
1982. 
Forthcoming book. 

[Goldstein and Bobrow 801 
Goldstein, I.P., and Bobrow, D.G. 
Extending Object Oriented Programming in 

Smalltalk. 
In Proceedings of the Lisp Conference. 

Stanford University, 1980. 

[Ingalls 781 Ingalls, D.H.H. 
The Smalltalk- Programming System: Design 

and Implementation. 
In Proceedings of the Fifth Annual Principles of 

Programming Languages Symposium, 

pages 9-16. ACM, January, 1978. 

[LRG 811 The Xerox Learning Research Group. 
The Smalltalk- System. 
Byte 6(8):36-48, August, 1981. 

237 


